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Designing engineering components that make optimal use of materials requires consider-
ation of the nonlinear characteristics associated with both the manufacturing and working
environments. The modeling of these characteristics can only be done through numerical
formulation and simulation, and this in turn requires an understanding of both the theoretical
background and associated computer solution techniques. By presenting both the nonlinear
continuum analysis and the associated finite element techniques under one roof, Bonet and
Wood provide, in the new edition of this well-received and successful text, a complete, clear,
and unified treatment of these important subjects.

An opening gentle scene-setting chapter precedes an introduction to mathematical pre-
liminaries. Aspects of nonlinear kinematics and elasto-plastic behavior are then discussed
by considering pin-jointed trusses. The development of continuum kinematics, stress, and
equilibrium is followed by consideration of hyperelasticity for compressible and incom-
pressible materials including descriptions in principal directions and the treatment of finite
strain elasto-plasticity. Linearization of the equilibrium equations naturally leads on to finite
element discretization, equation solution, and computer implementation. The majority of
chapters include worked examples and exercises. In addition, the book provides user instruc-
tions, program description, and examples for the FLagSHyP computer implementation for
which the source code is available free at www.flagshyp.com.

This introduction to nonlinear continuum mechanics is suitable for courses aimed at
postgraduate students. It can also be used by those in industry requiring an appreciation of
the way in which their computer simulation programs work.

J av i e r B o n e t is a Professor of Engineering and the Head of the School of Engineering
at Swansea University, and a visiting professor at the Universitat Politecnica de Catalunya
in Spain. He has extensive experience of teaching topics in structural mechanics, including
large strain nonlinear solid mechanics, to undergraduate and graduate engineering stu-
dents. He has been active in research in the area of computational mechanics for over
25 years and has written over 60 papers and over 70 conference contributions on many
topics within the subject and given invited, keynote and plenary lectures at numerous
international conferences.

R i c h a r d D. W o o d is an Honorary Research Fellow in the Civil and Computational
Engineering Centre at Swansea University. He has over 20 years experience of teaching the
course Nonlinear Continuum Mechanics for Finite Element Analysis at Swansea Univer-
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Roorkee, India, and the Institute of Structural Engineering at the Technical University in
Graz. Dr. Wood’s academic career has focused on finite element analysis, and he has written
over 60 papers in international journals, and many chapter contributions, on topics related
to nonlinear finite element analysis.
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A fragment from the poem
“An Essay on Criticism’’
by Alexander Pope (1688–1744)

A little Learning is a dang’rous Thing;
Drink deep, or taste not the Pierian Spring:
There shallow Draughts intoxicate the Brain,
And drinking largely sobers us again.
Fir’d at first Sight with what the Muse imparts,
In fearless Youth we tempt the Heights of Arts,
While from the bounded Level of our Mind,
Short Views we take, nor see the lengths behind,
But more advanc’d, behold with strange Surprize
New, distant Scenes of endless Science rise!
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PREFACE

A fundamental aspect of engineering is the desire to design artifacts that exploit
materials to a maximum in terms of performance under working conditions and effi-
ciency of manufacture. Such an activity demands an increasing understanding of the
behavior of the artifact in its working environment together with an understanding
of the mechanical processes occurring during manufacture.

To be able to achieve these goals it is likely that the engineer will need to
consider the nonlinear characteristics associated possibly with the manufacturing
process but certainly with the response to working load. Currently, analysis is most
likely to involve a computer simulation of the behavior. Because of the availability
of commercial finite element computer software, the opportunity for such nonlinear
analysis is becoming increasingly realized.

Such a situation has an immediate educational implication because, for com-
puter programs to be used sensibly and for the results to be interpreted wisely, it
is essential that the users have some familiarity with the fundamentals of nonlin-
ear continuum mechanics, nonlinear finite element formulations, and the solution
techniques employed by the software. This book seeks to address this problem by
providing a unified introduction to these three topics.

The style and content of the book obviously reflect the attributes and abilities
of the authors. Both authors have lectured on this material for a number of years
to postgraduate classes, and the book has emerged from these courses. We hope
that our complementary approaches to the topic will be in tune with the variety of
backgrounds expected of our readers and, ultimately, that the book will provide a
measure of enjoyment brought about by a greater understanding of what we regard
as a fascinating subject.

xv
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CHANGES FROM FIRST EDITION

The first edition of this book focused on elasticity and consigned inelastic effects
to an appendix. Ten years on the subject of large strain elasto-plasticity has become
more consolidated. Consequently, it is now timely to include elasto-plasticity within
the main body of the book. In addition, it was felt that consideration of the finite
deformation of elasto-plastic trusses would provide a valuable introduction to both
large strain behavior and elasto-plasticity. It is hoped that this edition will provide
readers with a more comprehensive introduction to the fundamentals of the finite
deformation of solids.

READERSHIP

This book is most suited to a postgraduate level of study by those in either higher
education or industry who have graduated with an engineering or applied mathe-
matics degree. However, the material is equally applicable to first-degree students
in the final year of an applied maths course or an engineering course containing
some additional emphasis on maths and numerical analysis. A familiarity with stat-
ics and elementary stress analysis is assumed, as is some exposure to the principles
of the finite element method. However, a primary objective of the book is that it
be reasonably self-contained, particularly with respect to the nonlinear continuum
mechanics chapters, which comprise a large portion of the content.

When dealing with such a complex set of topics it is unreasonable to expect all
readers to become familiar with all aspects of the book. If the reader is prepared not
to get too hung up on details, it is possible to use the book to obtain a reasonable
overview of the subject. Such an approach may be suitable for someone starting
to use a nonlinear computer program. Alternatively, the requirements of a research
project may necessitate a deeper understanding of the concepts discussed. To assist
in this latter endeavor the book provides access to a computer program for the
nonlinear finite deformation finite element analysis of two- and three-dimensional
solids. Such a program provides the basis for a contemporary approach to finite
deformation elasto-plastic analysis.

LAYOUT

Chapter 1: Introduction

Here, the nature of nonlinear computational mechanics is discussed followed by
a series of very simple examples that demonstrate various aspects of nonlinear
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structural behavior. These examples are intended, to an extent, to upset the reader’s
preconceived ideas inherited from an overexposure to linear analysis and, we hope,
provide a motivation for reading the rest of the book! Nonlinear strain measures are
introduced and illustrated using a simple one-degree-of-freedom truss analysis. The
concepts of linearization and the directional derivative are of sufficient importance
to merit a gentle introduction in this chapter. Linearization naturally leads on to the
Newton–Raphson iterative solution, which is the fundamental way of solving the
nonlinear equilibrium equations occurring in finite element analysis. Consequently,
by way of an example, the simple truss is solved and a short FORTRAN program
is presented that, in essence, is the prototype for the main finite element program
discussed later in the book.

Chapter 2: Mathematical Preliminaries

Vector and tensor manipulations occur throughout the book, and these are intro-
duced in this chapter. Although vector algebra is a well-known topic, tensor algebra
is less familiar, certainly, to many approaching the subject with an engineering edu-
cational background. Consequently, tensor algebra is considered in enough detail
to cover the needs of the subsequent chapters, and in particular, it is hoped that
readers will understand the physical interpretation of a second-order tensor. Cru-
cial to the development of the finite element solution scheme is the concept of
linearization and the directional derivative. The introduction provided in Chapter
1 is now thoroughly developed. Finally, for completeness, some standard analysis
topics are briefly presented.

Chapter 3: Analysis of Three-dimensional Truss Structures

This chapter is largely independent of the remainder of the book and deals with the
large strain elasto-plastic behavior of trusses. The chapter begins with a discussion
of the nonlinear kinematics of a simple two-noded truss member which leads to
a definition of logarithmic strain. A hyperelastic stress–strain relationship is then
derived and used to obtain the equilibrium equations at a node. These equations
are then linearized with respect to small incremental displacements to provide a
Newton–Raphson solution process. The chapter then moves on to discuss a sim-
ple hyperelastic plastic model for the truss member based on the multiplicative
decomposition of the total stretch into elastic and plastic components. The consti-
tutive model is also linearized to provide a tangent modulus. The chapter concludes
with some examples of the use of the formulation obtained using the FLagSHyP
program.
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Chapter 4: Kinematics

This chapter deals with the kinematics of finite deformation, that is, the study of
motion without reference to the cause. Central to this concept is the deformation
gradient tensor, which describes the relationship between elemental vectors defin-
ing neighboring particles in the undeformed and deformed configurations of the
body whose motion is under consideration. The deformation gradient permeates
most of the development of finite deformation kinematics because, among other
things, it enables a variety of definitions of strain to be established. Material (initial)
and spatial (current) descriptions of various items are discussed, as is the lineariza-
tion of kinematic quantities. Although dynamics is not the subject of this book,
it is nevertheless necessary to consider velocity and the rate of deformation. The
chapter concludes with a brief discussion of rigid body motion and objectivity.

Chapter 5: Stress and Equilibrium

The definition of the true or Cauchy stress is followed by the development of
standard differential equilibrium equations. As a prelude to the finite element devel-
opment the equilibrium equations are recast in the weak integral virtual work form.
Although initially in the spatial or current deformed configuration, these equations
are reformulated in terms of the material or undeformed configuration, and as a
consequence alternative stress measures emerge. Finally, stress rates are discussed
in preparation for the following chapter on hyperelasticity.

Chapter 6: Hyperelasticity

Hyperelasticity, whereby the stress is found as a derivative of some potential energy
function, encompasses many types of nonlinear material behavior and provides the
basis for the finite element treatment of elastoplastic behavior. Isotropic hyperelas-
ticity is considered both in a material and in a spatial description for compressible
and incompressible behavior. The topic is extended to a general description in prin-
ciple directions that is specialized for the cases of plane strain, plane stress, and
uniaxial behavior.

Chapter 7: Large Elasto-plastic Deformations

This chapter provides an introduction to the formulation of inelastic deformation
processes based on the multiplicative decomposition of the deformation gradient
into recoverable and permanent components. Although only a basic Von Mises
model with a radial return-mapping procedure is presented, the use of principal
directions and logarithmic stretches provides a simple mechanism whereby small
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strain concepts can be extended to large strains. From the outset, the approach fol-
lowed, to derive the kinematic rate equations necessary for the flow rule, anticipates
the standard trial stress and return-map procedure required to satisfy the plasticity
constraints. Such a development clarifies the kinematic rate equations in the context
of the eventual incremental algorithmic procedure.

Chapter 8: Linearized Equilibrium Equations

To establish the Newton–Raphson solution procedure the virtual work expression of
equilibrium may be linearized either before or after discretization. Here the former
approach is adopted. Linearization of the equilibrium equations includes consider-
ation of deformation-dependent surface pressure loading. A large proportion of this
chapter is devoted to incompressibility and to the development, via the Hu-Washizu
principle, of the mean dilatation technique.

Chapter 9: Discretization and Solution

All previous chapters have provided the foundation for the development of the
discretized equilibrium and linearized equilibrium equations considered in this
chapter. Linearization of the virtual work equation leads to the familiar finite
element expression of equilibrium involving

∫
BT σdv, whereas discretization of

the linearized equilibrium equations leads to the tangent matrix, which comprises
constitutive and initial stress components. Discretization of the mean dilatation
technique is presented in detail. The tangent matrix forms the basis of the Newton–
Raphson solution procedure, which is presented as the fundamental solution tech-
nique enshrined in the computer program discussed in the following chapter. The
chapter concludes with a discussion of line search and arc-length enhancement to
the Newton–Raphson procedure.

Chapter 10: Computer Implementation

Here, information is presented on a nonlinear finite element computer program,
called FLagSHyP,* for the solution of finite deformation elasto-plastic finite
element problems employing the neo-Hookean hyperelastic compressible and
incompressible constitutive equations developed in Chapters 6 and 7. The usage
and layout of the FORTRAN program is discussed together with the function of
the various key subroutines. The program is available free on the Internet from the

* Finite element Large Strain Hyperelasticity Program.
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web site: www.flagshyp.com. Alternatively, it can be obtained by e-mail request
to the authors j.bonet@swansea.ac.uk or r.d.wood@swansea.ac.uk.

Finally, a bibliography is provided that enables the reader to access the back-
ground to the more standard aspects of finite element analysis. Also listed are books
and papers that have been of use in the preparation of this book or that cover similar
material in greater depth.

Note on equation numbering: Typically, Equation (x.yz a, b, c, d)b refers to
Equation (x.yz, b).



C H A P T E R O N E

INTRODUCTION

1.1 NONLINEAR COMPUTATIONAL MECHANICS

Two sources of nonlinearity exist in the analysis of solid continua, namely, mate-
rial and geometric nonlinearity. The former occurs when, for whatever reason,
the stress strain behavior given by the constitutive relation is nonlinear, whereas
the latter is important when changes in geometry, however large or small, have a
significant effect on the load deformation behavior. Material nonlinearity can be
considered to encompass contact friction, whereas geometric nonlinearity includes
deformation-dependent boundary conditions and loading.

Despite the obvious success of the assumption of linearity in engineering anal-
ysis, it is equally obvious that many situations demand consideration of nonlinear
behavior. For example, ultimate load analysis of structures involves material non-
linearity and perhaps geometric nonlinearity, and any metal-forming analysis such
as forging or crash-worthiness must include both aspects of nonlinearity. Struc-
tural instability is inherently a geometric nonlinear phenomenon, as is the behavior
of tension structures. Indeed the mechanical behavior of the human body itself,
say in impact analysis, involves both types of nonlinearity. Nonlinear and linear
continuum mechanics deal with the same subjects such as kinematics, stress and
equilibrium, and constitutive behavior. But in the linear case an assumption is made
that the deformation is sufficiently small to enable the effect of changes in the geo-
metrical configuration of the solid to be ignored, whereas in the nonlinear case the
magnitude of the deformation is unrestricted.

Practical stress analysis of solids and structures is unlikely to be served by
classical methods, and currently numerical analysis, predominately in the form of
the finite element method, is the only route by which the behavior of a complex
component subject to complex loading can be successfully simulated. The study of
the numerical analysis of nonlinear continua using a computer is called nonlinear
computational mechanics, which, when applied specifically to the investigation

1
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of solid continua, comprises nonlinear continuum mechanics together with the
numerical schemes for solving the resulting governing equations.

The finite element method may be summarized as follows. It is a procedure
whereby the continuum behavior described at an infinity of points is approximated
in terms of a finite number of points, called nodes, located at specific points in the
continuum. These nodes are used to define regions, called finite elements, over
which both the geometry and the primary variables in the governing equations
are approximated. For example, in the stress analysis of a solid the finite element
could be a tetrahedra defined by four nodes and the primary variables the three
displacements in the Cartesian directions. The governing equations describing the
nonlinear behavior of the solid are usually recast in a so-called weak integral form
using, for example, the principle of virtual work or the principle of stationary total
potential energy. The finite element approximations are then introduced into these
integral equations, and a standard textbook manipulation yields a finite set of non-
linear algebraic equations in the primary variable. These equations are then usually
solved using the Newton–Raphson iterative technique.

The topic of this book can succinctly be stated as the exposition of the nonlinear
continuum mechanics necessary to develop the governing equations in continu-
ous and discrete form and the formulation of the Jacobian or tangent matrix used
in the Newton–Raphson solution of the resulting finite set of nonlinear algebraic
equations.

1.2 SIMPLE EXAMPLES OF NONLINEAR STRUCTURAL

BEHAVIOR

It is often the case that nonlinear behavior concurs with one’s intuitive expectation
of the behavior and that it is linear analysis that can yield the nonsensical result. The
following simple examples illustrate this point and provide a gentle introduction to
some aspects of nonlinear behavior. These two examples consider rigid materials,
but the structures undergo finite displacements; consequently, they are classified as
geometrically nonlinear problems.

1.2.1 Cantilever

Consider the weightless rigid bar-linear elastic torsion spring model of a can-
tilever shown in Figure 1.1. Taking moments about the hinge gives the equilibrium
equation as

FL cos θ = M. (1.1)
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FIGURE 1.1 Simple cantilever.

If K is the torsional stiffness of the spring, then M = Kθ and we obtain the
following nonlinear relationship between F and θ:

FL
K

=
θ

cos θ
. (1.2)

If the angle θ → 0, then cos θ → 1, and the linear equilibrium equation is
recovered as

F =
K

L
θ. (1.3)

The exact nonlinear equilibrium path is shown in Figure 1.1(b), where clearly the
nonlinear solution makes physical sense because θ < π/2.

1.2.2 Column

The same bar-spring system is now positioned vertically (Figure 1.2(a)), and again
moment equilibrium about the hinge gives

PL sin θ = M or
PL
K

=
θ

sin θ
. (1.4)

The above equilibrium equation can have two solutions: firstly if θ = 0, then
sin θ = 0, M = 0, and equilibrium is satisfied; and secondly, if θ �= 0, then
PL/K = θ/sin θ. These two solutions are shown in Figure 1.2(b), where the ver-
tical axis is the equilibrium path for θ = 0 and the horseshoe-shaped equilibrium
path is the second solution. The intersection of the two solutions is called a bifur-
cation point. Observe that for PL/K < 1 there is only one solution, namely θ = 0
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FIGURE 1.2 Simple column.

but for PL/K > 1 there are three solutions. For instance, when PL/K ≈ 1.57,
either θ = 0 or ±π/2.

For very small values of θ, sin θ → θ and Equation (1.4) reduces to the linear
(in θ) equation

(K − PL)θ = 0. (1.5)

Again there are two solutions: θ = 0 or PL/K = 1 for any value of θ, the latter
solution being the horizontal path shown in Figure 1.2(b). Equation (1.5) is a typi-
cal linear stability analysis where P = K/L is the elastic critical (buckling) load.
Applied to a beam column, such a geometrically nonlinear analysis would yield the
Euler buckling load. In a finite element context for, say, plates and shells this would
result in an eigenvalue analysis, the eigenvalues being the buckling loads and the
eigenvectors being the corresponding buckling modes.

Observe in these two cases that it is only by considering the finite displacement
of the structures that a complete nonlinear solution has been achieved.

1.3 NONLINEAR STRAIN MEASURES

In the examples presented in the previous section, the beam or column remained
rigid during the deformation. In general, structural components or continuum bodies
will exhibit large strains when undergoing a geometrically nonlinear deformation
process. As an introduction to the different ways in which these large strains can be
measured we consider first a one-dimensional truss element and a simple example
involving this type of structural component undergoing large displacements and
large strains. We will then give a brief introduction to the difficulties involved in
the definition of correct large strain measures in continuum situations.
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L 

l 

A

a

FIGURE 1.3 One-dimensional strain.

1.3.1 One-Dimensional Strain Measures

Imagine that we have a truss member of initial length L and area A that is stretched
to a final length l and area a as shown in Figure 1.3. The simplest possible quantity
that we can use to measure the strain in the bar is the so-called engineering strain εE

defined as

εE =
l − L

L
. (1.6)

Clearly different measures of strain could be used. For instance, the change in
length Δl = l − L could be divided by the final length rather than the initial
length. Whichever definition is used, if l ≈ L the small strain quantity ε = Δl/l is
recovered.

An alternative large strain measure can be obtained by adding up all the small
strain increments that take place when the rod is continuously stretched from its
original length L to its final length l. This integration process leads to the definition
of the natural or logarithmic strain εL as

εL =
∫ l

L

dl

l
= ln

l

L
. (1.7)

Although the above strain definitions can in fact be extrapolated to the deformation
of a three-dimensional continuum body, this generalization process is complex and
computationally costly. Strain measures that are much more readily generalized to
continuum cases are the so-called Green or Green’s strain εG and Almansi strain
εA defined as

εG =
l2 − L2

2L2 ; (1.8a)

εA =
l2 − L2

2l2
. (1.8b)
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Irrespective of which strain definition is used, a simple Taylor series analysis shows
that for the case where l ≈ L, all the above quantities converge to the small strain
definition Δl/l. For instance, in the Green strain case, we have

εG(l ≈ L) ≈ (l + Δl)2 − l2

2l2

=
1
2

l2 + Δl2 + 2lΔl − l2

l2

≈ Δl

l
. (1.9)

1.3.2 Nonlinear Truss Example

This example is included in order to introduce a number of features associated
with finite deformation analysis. Later, in Section 1.4, a small FORTRAN program
will be given to solve the nonlinear equilibrium equation that results from the truss
analysis. The structure of this program is, in effect, a prototype of the general finite
element program presented later in this book.

We consider the truss member shown in Figure 1.4 with initial and loaded
lengths, cross-sectional areas and volumes: L, A, V and l, a, v respectively. For
simplicity we assume that the material is incompressible and hence V = v or
AL = al. Two constitutive equations are chosen based, without explanation at the
moment, on Green’s and a logarithmic definition of strain, hence the Cauchy, or
true, stress σ is either

σ = E
l2 − L2

2L2 or σ = E ln
l

L
; (1.10a,b)

B

D

A X

F

x

l , a
 , υ

L , A , V

θ

FIGURE 1.4 Single incompressible truss member.
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where E is a (Young’s modulus like) constitutive constant that, in ignorance, has
been chosen to be the same irrespective of the strain measure being used. Physically
this is obviously wrong, but it will be shown below that for small strains it is accept-
able. Indeed, it will be seen in Chapter 5 that the Cauchy stress cannot be simply
associated with Green’s strain, but for now such complications will be ignored.

The equation for vertical equilibrium at the sliding joint B, in nomenclature
that will be used later, is simply

R(x) = T (x) − F = 0; T = σa sin θ; sin θ =
x

l
; (1.11a,b,c)

where T (x) is the vertical component, at B, of the internal force in the truss mem-
ber and x gives the truss position. R(x) is the residual or out-of-balance force,
and a solution for x is achieved when R(x) = 0. In terms of the alternative strain
measures, T is

T =
Evx

l2

(
l2 − L2

2L2

)
or T =

Evx

l2
ln

l

L
. (1.12a,b)

Note that in this equation l is function of x as l2 = D2 + x2 and therefore T is
highly nonlinear in x.

Given a value of the external load F , the procedure that will eventually be
used to solve for the unknown position x is the Newton–Raphson method, but in
this one-degree-of-freedom case it is easier to choose a value for x and find the
corresponding load F . Typical results are shown in Figure 1.5, where an initial
angle of 45◦ has been assumed. It is clear from this figure that the behavior is

x/L

X/L

− X/L

p′

F/EA

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 0 1 2 3 4

Logarithmic

Green

p

q

FIGURE 1.5 Truss example: load deflection behavior.



8 I N T R O D U C T I O N

highly nonlinear. Evidently, where finite deformations are involved it appears as
though care has to be exercised in defining the constitutive relations because differ-
ent strain choices will lead to different solutions. But, at least, in the region where x

is in the neighborhood of its initial value X and strains are likely to be small, the
equilibrium paths are close.

In Figure 1.5 the local maximum and minimum forces F occur at the so-called
limit points p and q, although in reality if the truss were compressed to point p it
would experience a violent movement or snap-through behavior from p to point p′

as an attempt is made to increase the compressive load in the truss beyond the limit
point.

By making the truss member initially vertical we can examine the large strain
behavior of a rod. The typical load deflection behavior is shown in Figure 1.6,
where clearly the same constant E should not have been used to represent the same
material characterized using different strain measures. Alternatively, by making the
truss member initially horizontal, the stiffening effect due to the development of
tension in the member can be observed in Figure 1.7.

x/L

F/EA

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 1.5 2 2.5 3 3.5 4

Logarithmic

Green

FIGURE 1.6 Large strain rod: load deflection behavior.

x/L

F/EA

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2

Logarithmic

Green

FIGURE 1.7 Horizontal truss: tension stiffening.
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Further insight into the nature of nonlinearity in the presence of large defor-
mation can be revealed by this simple example if we consider the vertical stiffness
of the truss member at joint B. This stiffness is the change in the equilibrium
equation, R(x) = 0, due to a change in position x and is generally repre-
sented by K = dR/dx. If the load F is constant, the stiffness is the change
in the vertical component, T , of the internal force, which can be obtained with
the help of Equations (1.11b,c) together with the incompressibility condition
a = V/l as

K =
dT

dx

=
d

dx

(
σV x

l2

)

=
(

ax

l

dσ

dl
− 2σax

l2

)
dl

dx
+

σa

l

= a

(
dσ

dl
− 2σ

l

)
x2

l2
+

σa

l
. (1.13)

All that remains is to find dσ/dl for each strain definition, labelled G and L for
Green’s and the logarithmic strain respectively, to give

(
dσ

dl

)
G

=
El

L2 and

(
dσ

dl

)
L

=
E

l
. (1.14a,b)

Hence the stiffnesses are

KG =
A

L

(
E − 2σ

L2

l2

)
x2

l2
+

σa

l
; (1.15a)

KL =
a

l
(E − 2σ)

x2

l2
+

σa

l
. (1.15b)

Despite the similarities in the expressions for KG and KL, the gradient of the
curves in Figure 1.5 shows that the stiffnesses are generally not the same. This
is to be expected, again, because of the casual application of the constitutive
relations.
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Finally, it is instructive to attempt to rewrite the final term in (1.15a) in an
alternative form to give KG as,

KG =
A

L
(E − 2S)

x2

l2
+

SA

L
; S = σ

L2

l2
. (1.15c)

The above expression introduces the second Piola–Kirchhoff stress S, which gives
the force per unit undeformed area but transformed by what will become known
as the deformation gradient inverse, that is, (l/L)−1. It will be shown in Chapter 5
that the second Piola–Kirchhoff stress is associated with Green’s strain and not the
Cauchy stress, as was erroneously assumed in Equation (1.10a). Allowing for the
local-to-global force transformation implied by (x/l)2, Equations (1.15c) illustrate
that the stiffness can be expressed in terms of the initial undeformed configuration
or the current deformed configuration.

The above stiffness terms show that, in both cases, the constitutive constant
E has been modified by the current state of stress σ or S. We can see that this is
a consequence of allowing for geometry changes in the formulation by observing
that the 2σ term emerges from the derivative of the term 1/l2 in Equation (1.13).
If x is close to the initial configuration X then a ≈ A, l ≈ L, and therefore
KL ≈ KG.

Equations (1.15) contain a stiffness term σa/l (=SA/L) which is generally
known as the initial stress stiffness. The same term can be derived by considering the
change in the equilibrating global end forces occurring when an initially stressed
rod rotates by a small amount, hence σa/l is also called the geometric stiffness.
This is the term that, in general, occurs in an instability analysis because a suffi-
ciently large negative value can render the overall stiffness singular. The geometric
stiffness is unrelated to the change in cross-sectional area and is purely associated
with force changes caused by rigid body rotation.

The second Piola–Kirchhoff stress will reappear in Chapter 5, and the mod-
ification of the constitutive parameters by the current state of stress will reap-
pear in Chapter 6, which deals with constitutive behavior in the presence of finite
deformation.

1.3.3 Continuum Strain Measures

In linear stress–strain analysis the deformation of a continuum body is measured in
terms of the small strain tensor ε. For instance, in a simple two-dimensional case ε

has components εxx, εyy, and εxy = εxy, which are obtained in terms of the x and
y components of the displacement of the body as
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εxx =
∂ux

∂x
; (1.16a)

εyy =
∂uy

∂y
; (1.16b)

εxy =
1
2

(
∂ux

∂y
+

∂uy

∂x

)
. (1.16c)

These equations rely on the assumption that the displacements ux and uy are very
small, so that the initial and final positions of a given particle are practically the
same. When the displacements are large, however, this is no longer the case and one
must distinguish between initial and final coordinates of particles. This is typically
done by using capital letters X, Y for the initial positions and lower case x, y for
the current coordinates. It would then be tempting to extend the use of the above
equations to the nonlinear case by simply replacing derivatives with respect to x

and y by their corresponding initial coordinates X, Y . It is easy to show that for
large displacement situations this would result in strains that contradict the physi-
cal reality. Consider for instance a two-dimensional solid undergoing a 90◦ rotation
about the origin as shown in Figure 1.8. The corresponding displacements of any
given particle are seen from the figure to be

ux = −X − Y ; (1.17a)

uy = X − Y ; (1.17b)

and therefore the application of the above formulas gives

εxx = εyy = −1; εxy = 0. (1.18a,b)

u

P

X

Y

−Y X
x

y

P 

′
90°

FIGURE 1.8 90◦ rotation of a two-dimensional body.
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These values are clearly incorrect, as the solid experiences no strain during the
rotation.

It is clearly necessary to re-establish the definition of strain for a continuum
so that physically correct results are obtained when the body is subject to a finite
motion or deformation process. Although general nonlinear strain measures will
be discussed at length in Chapter 4, we can introduce some of the basic ideas by
trying to extend the definition of Green’s strain given in Equation (1.8a) to the two-
dimensional case. Consider for this purpose a small elemental segment dX initially
parallel to the x axis that is deformed to a length ds as shown in Figure 1.9. The
final length can be evaluated from the displacements as

ds2 =
(

dX +
∂ux

∂X
dX

)2

+
(

∂uy

∂X
dX

)2

. (1.19)

Based on the one-dimensional Green strain Equation (1.8a), the x component of
the two-dimensional Green strain can now be defined as

Exx =
ds2 − dX2

2dX2

=
1
2

[(
1 +

∂ux

∂X

)2

+
(

∂uy

∂X

)2

− 1

]

=
∂ux

∂X
+

1
2

[(
∂ux

∂X

)2

+
(

∂uy

∂X

)2
]
. (1.20a)

u(X + dX,Y  )

u(X,Y  )

dX

X, x

Y,y

ds
(duy 

/dX )dX

(1 + dux  
/dX )dX

FIGURE 1.9 General deformation of a two-dimensional body.
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Using similar arguments, equations for Eyy and (with more difficulty) the shear
strains Exy = Eyx are obtained as

Eyy =
∂uy

∂Y
+

1
2

[(
∂ux

∂Y

)2

+
(

∂uy

∂Y

)2
]
; (1.20b)

Exy =
1
2

(
∂ux

∂Y
+

∂uy

∂X

)
+

1
2

(
∂ux

∂X

∂ux

∂Y
+

∂uy

∂X

∂uy

∂Y

)
. (1.20c)

Clearly, if the displacements are small, the quadratic terms in the above expres-
sions can be ignored and we recover Equations (1.16a,b,c). It is a simple exercise to
show that for the rigid rotation case discussed above, the Green strain components
are Exx = Eyy = Exy = 0, which coincides with one’s intuitive perception of the
lack of strain in this particular type of motion.

It is clear from Equations (1.20a–c) that nonlinear measures of strain in terms of
displacements can become much more intricate than in the linear case. In general,
it is preferable to restrict the use of displacements as problem variables to linear sit-
uations where they can be assumed to be infinitesimal and deal with fully nonlinear
cases using current or final positions x(X, Y ) and y(X, Y ) as problem variables. In
a fully nonlinear context, however, linear displacements will arise again during the
Newton–Raphson solution process as iterative increments from the current position
of the body until final equilibrium is reached. This linearization process is one of
the most crucial aspects of nonlinear analysis and will be introduced in the next
section. Finally, it is apparent that a notation more powerful than the one used above
will be needed to deal successfully with more complex three-dimensional cases.
In particular, Cartesian tensor notation has been chosen in this book as it provides
a reasonable balance between clarity and generality. The basic elements of this
type of notation are introduced in Chapter 2. Indicial tensor notation is used only
very sparingly, although indicial equations can be easily translated into a computer
language such as FORTRAN.

1.4 DIRECTIONAL DERIVATIVE, LINEARIZATION AND

EQUATION SOLUTION

The solution to the nonlinear equilibrium equation, typified by Equation (1.11a,b,c),
amounts to finding the position x for a given load F . This is achieved in finite defor-
mation finite element analysis by using a Newton–Raphson iteration. Generally, this
involves the linearization of the equilibrium equations, which requires an under-
standing of the directional derivative. A directional derivative is a generalization of
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a derivative in that it provides the change in an item due to a small change in some-
thing upon which the item depends. For example, the item could be the determinant
of a matrix, in which case the small change would be in the matrix itself.

1.4.1 Directional Derivative

This topic is discussed in detail in Chapter 2 but will be introduced here via a
tangible example using the simple linear spring structure shown in Figure 1.10.

The total potential energy (TPE), Π, of the structure is

Π(x) = 1
2kx2

1 + 1
2k(x2 − x1)2 − Fx2, (1.21)

where x = (x1, x2)T and x1 and x2 are the displacements of the Joints 1 and 2.
Now consider the TPE due to a change in displacements given by the increment
vector u = (u1, u2)T as

Π(x + u) = 1
2k(x1 + u1)2 + 1

2k(x2 + u2 − x1 − u1)2 − F (x2 + u2). (1.22)

The directional derivative represents the gradient of Π in the direction u and gives
a linear (or first order) approximation to the increment in TPE due to the increment
in position u as

DΠ(x)[u] ≈ Π(x + u) − Π(x), (1.23)

where the general notation DΠ(x)[u] indicates directional derivative of Π at x in
the direction of an increment u. The evaluation of this derivative is illustrated in
Figure 1.11 and relies on the introduction of a parameter ε that is used to scale the
increment u to give new displacements x1 + εu1 and x2 + εu2 for which the TPE is

Π(x + εu) = 1
2k(x1 + εu1)2 + 1

2k(x2 + εu2 − x1 − εu1)2 − F (x2 + εu2).

(1.24)

x2x1 kk

F
1 2

FIGURE 1.10 Two-degrees-of-freedom linear spring structure.
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Π

DΠ(x)[u]

u

ε = 1
ε = 0

x1

x2

x

Π(x + u)
Π(x + εu)

Π(x)

ε

FIGURE 1.11 Directional derivative.

Observe that for a given x and u the TPE is now a function of the parameter ε and
a first-order Taylor series expansion about ε = 0 gives

Π(x + εu) ≈ Π(x) +
[

d

dε

∣∣∣∣
ε=0

Π(x + εu)
]
ε. (1.25)

If we take ε = 1 in this equation and compare it with Equation (1.23), an equation
for the directional derivative emerges as

DΠ(x)[u] =
d

dε

∣∣∣∣
ε=0

Π(x + εu)

= kx1u1 + k(x2 − x1)(u2 − u1) − Fu2

= uT (Kx − F), (1.26)

where

K =
[

2k −k

−k k

]
; F =

[
0
F

]
. (1.27)

It is important to note that although the TPE function Π(x) was nonlinear in x, the
directional derivative DΠ(x)[u] is always linear in u. In this sense we say that the
function has been linearized with respect to the increment u.

The equilibrium of the structure is enforced by requiring the TPE to be station-
ary, which implies that the gradient of Π must vanish for any direction u. This is
expressed in terms of the directional derivative as

DΠ(x)[u] = 0; for any u (1.28)
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and consequently the equilibrium position x satisfies

Kx − F = 0. (1.29)

If the direction u in Equation (1.26) or (1.28) is interpreted as a virtual displacement
δu then, clearly, the virtual work expression of equilibrium is obtained.

The concept of the directional derivative is far more general than this exam-
ple implies. For example, we can find the directional derivative of the determi-
nant of a 2 × 2 matrix A = [Aij ] in the direction of the change U = [Uij ], for
i, j = 1, 2 as

D det(A)[U] =
d

dε

∣∣∣∣
ε=0

det(A + εU)

=
d

dε

∣∣∣∣
ε=0

[
(A11 + εU11)(A22 + εU22)

− (A21 + εU21)(A12 + εU12)
]

= A22U11 + A11U22 − A21U12 − A12U21. (1.30)

We will see in Chapter 2 that for general n × n matrices this directional derivative
can be rewritten as

D det(A)[U] = detA (A−T : U), (1.31)

where, generally, the double contraction of two matrices is A : B =
∑n

i,j=1AijBij .

1.4.2 Linearization and Solution of Nonlinear Algebraic

Equations

As a prelude to finite element work, let us consider the solution of a set of nonlinear
algebraic equations:

R(x) = 0, (1.32)

where, for example, for a simple case with two equations and two unknowns

R(x) =
[
R1(x1, x2)
R2(x1, x2)

]
; x =

[
x1

x2

]
. (1.33a,b)
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Typically, nonlinear equations of this type are solved using a Newton–Raphson
iterative process whereby given a solution estimate xk at iteration k, a new value
xk+1 = xk + u is obtained in terms of an increment u by establishing the linear
approximation

R(xk+1) ≈ R(xk) + DR(xk)[u] = 0. (1.34)

This directional derivative is evaluated with the help of the chain rule as

DR(xk)[u] =
d

dε

∣∣∣∣
ε=0

R(xk + εu)

=
d

dε

∣∣∣∣
ε=0

[
R1(x1 + εu1, x2 + εu2)
R2(x1 + εu1, x2 + εu2)

]
= Ku, (1.35)

where the tangent matrix K is

K(xk) = [Kij(xk)]; Kij(xk) =
∂Ri

∂xj

∣∣∣∣
xk

. (1.36)

If we substitute Equation (1.35) for the directional derivative into Equation (1.34),
we obtain a linear set of equations for u to be solved at each Newton–Raphson
iteration as

K(xk)u = −R(xk); xk+1 = xk + u. (1.37a,b)

For equations with a single unknown x, such as Equation (1.11a,b,c) for the truss
example seen in Section 1.3.2 whereR(x) = T (x)−F , the above Newton–Raphson
process becomes

u = − R(xk)
K(xk)

; xk+1 = xk + u. (1.38a,b)

This is illustrated in Figure 1.12.
In practice, the external load F is applied in a series of increments as

F =
l∑

i=1

ΔFi (1.39)
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R(xk)

xkxk+1

0

RT

F

x

u

K

x

FIGURE 1.12 Newton−Raphson iteration.

and the resulting Newton–Raphson algorithm is given in Box 1.1 where boldface
items generalize the above procedure in terms of column and square matrices. Note
that this algorithm reflects the fact that in a general finite element program, internal
forces and the tangent matrix are more conveniently evaluated at the same time. A
simple FORTRAN program for solving the one-degree-of-freedom truss example
is given in Box 1.2. This program stops once the stiffness becomes singular, that
is, at the limit point p. A technique to overcome this deficiency is dealt with in
Section 9.6.3. The way in which the Newton–Raphson process converges toward

BOX 1.1: Newton–Raphson Algorithm

• INPUT geometry, material properties, and solution parameters
• INITIALIZE F = 0, x = X (initial geometry), R = 0
• FIND initial K (typically (1.13))
• LOOP over load increments

• FIND ΔF (establish the load increment)
• SET F = F + ΔF
• SET R = R − ΔF
• DO WHILE (‖R‖/‖F‖ > tolerance)

• SOLVE Ku = −R (typically (1.38a))
• UPDATE x = x + u (typically (1.38b))
• FIND T (typically (1.12)) and K (typically (1.13))
• FIND R = T − F (typically (1.11))

• ENDDO
• ENDLOOP
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BOX 1.2: Simple Truss Program

c------------------------------------------------------
program truss

c------------------------------------------------------
c
c Newton-Raphson solver for 1 D.O.F. truss example
c
c Input:
c
c d ---> horizontal span
c x ---> initial height
c area ---> initial area
c e ---> Young modulus
c nincr ---> number of load increments
c fincr ---> force increment
c cnorm ---> residual force convergence norm
c miter ---> maximum number of Newton-Raphson
c iterations
c
c------------------------------------------------------
c

implicit double precision (a-h,o-z)
double precision l,lzero

c
data d,x,area,e,f,

resid /2500.,2500.,100.,5.e5,0.,0./
data nincr,fincr,cnorm,miter /1,1.5e7,1.e-20,20/

c
c initialize geometry data and stiffness
c

lzero=sqrt(x**2+d**2)
vol=area*lzero
stiff=(area/lzero)*e*(x/lzero)*(x/lzero)

c
c starts load increments
c

do incrm=1,nincr
f=f+fincr
resid=resid-fincr

c
c Newton-Raphson iteration
c

rnorm=cnorm*2
niter=0
do while((rnorm.gt.cnorm).and.(niter.lt.miter))

niter=niter+1

(continued)
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BOX 1.2: (cont.)

c
c find geometry increment
c

u=-resid/stiff
x=x+u
l=sqrt(x*x+d*d)
area=vol/l

c
c find stresses and residual forces
c

stress=e*log(l/lzero)
t=stress*area*x/l
resid=t-f
rnorm=abs(resid/f)
print 100, incrm,niter,rnorm,x,f

c
c find stiffness and check stability
c

stiff=(area/l)*(e-2.*stress)*(x/l)*(x/l)
+(stress*area/l)

if(abs(stiff).lt.1.e-20) then
print *, ’ near zero stiffness - stop’
stop

endif
enddo

enddo
stop

100 format(’ increment=’,i3,’ iteration=’,i3,’
residual=’,g10.3,

& ’ x=’,g10.4,’ f=’,g10.4)
end

Modified Newton−Raphson

Newton−Raphson
10−10
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FIGURE 1.13 Convergence rate.
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the final solution is depicted in Figure 1.13 for the particular choice of input vari-
ables shown in Box 1.2. Note that only six iterations are needed to converge to
values within machine precision. We can contrast this type of quadratic rate of con-
vergence with a linear convergence rate, which, for instance, would result from a
modified Newton–Raphson scheme based, per load increment, on using the same
initial stiffness throughout the iteration process.



C H A P T E R T W O

MATHEMATICAL
PRELIMINARIES

2.1 INTRODUCTION

In order to make this book sufficiently self-contained, it is necessary to include this
chapter dealing with the mathematical tools that are needed to achieve a complete
understanding of the topics discussed in the remaining chapters. Vector and tensor
algebra is discussed, as is the important concept of the general directional deriva-
tive associated with the linearization of various nonlinear quantities that will appear
throughout the book.

Readers, especially with engineering backgrounds, are often tempted to skip
these mathematical preliminaries and move on directly to the main text. This temp-
tation need not be resisted, as most readers will be able to follow most of the
concepts presented even when they are unable to understand the details of the
accompanying mathematical derivations. It is only when one needs to understand
such derivations that this chapter may need to be consulted in detail. In this way,
this chapter should, perhaps, be approached like an instruction manual, only to be
referred to when absolutely necessary. The subjects have been presented without
the excessive rigors of mathematical language and with a number of examples that
should make the text more bearable.

2.2 VECTOR AND TENSOR ALGEBRA

Most quantities used in nonlinear continuum mechanics can only be described in
terms of vectors or tensors. The purpose of this section, however, is not so much
to give a rigorous mathematical description of tensor algebra, which can be found
elsewhere, but to introduce some basic concepts and notation that will be used

22
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throughout the book. Most readers will have a degree of familiarity with the con-
cepts described herein and may need to come back to this section only if clarification
on the notation used further on is required. The topics will be presented in terms of
Cartesian coordinate systems.

2.2.1 Vectors

Boldface italic characters are used to express points and vectors in a three-dimen-
sional Cartesian space. For instance, e1, e2, and e3 denote the three unit base
vectors shown in Figure 2.1, and any given vector v can be expressed as a linear
combination of these vectors as

v =
3∑

i=1

vi ei. (2.1)

In more mathematical texts, expressions of this kind are often written without the
summation sign,

∑
, as

v = vi ei. (2.2)

Such expressions make use of the Einstein or summation convention, whereby the
repetition of an index (such as the i in the above equation) automatically implies
its summation. For clarity, however, this convention will rarely be used in this text.

x1

v2
x2

x3

v1

v3

e1

v

e2

e3

FIGURE 2.1 Vector components.



24 M AT H E M AT I C A L P R E L I M I N A R I E S

The familiar scalar or dot product of two vectors is defined in such a way that
the products of the Cartesian base vectors are given as

ei · ej = δij , (2.3)

where δij is the Kroneker delta defined as

δij =
{

1 i = j;
0 i �= j.

(2.4)

Because the dot product is distributive with respect to the addition, the well-known
result that the scalar product of any two vectors u and v is given by the sum of the
products of the components is shown by

u · v =

(
3∑

i=1

ui ei

)
·
(

3∑
j=1

vj ej

)

=
3∑

i, j=1

uivj (ei · ej)

=
3∑

i=1

uivi = v · u. (2.5)

An additional useful expression for the components of any given vector v follows
from Equation (2.3) and the scalar product of Equation (2.1) by ej to give

vj = v · ej ; j = 1, 2, 3. (2.6)

In engineering textbooks, vectors are often represented by single-column matri-
ces containing their Cartesian components as

[v] =

⎡⎣v1

v2

v3

⎤⎦ , (2.7)

where the square brackets symbols [ ] have been used in order to distinguish the
vector v itself from the single-column matrix [v] containing its Cartesian com-
ponents. This distinction is somewhat superfluous unless more than one basis is
being considered. For instance, in the new basis e′

1, e′
2, and e′

3 shown in Figure 2.2,
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e2

e3

e2

x3

x1

x3

x2

e1

Q

Q

Q

'

'

e3'

e1'

x2'

x1'

FIGURE 2.2 Transformation of the Cartesian axes.

the same vector v will manifest itself with different components, in which case the
following notation can be used:

[v]′ =

⎡⎢⎣v′
1

v′
2

v′
3

⎤⎥⎦ . (2.8)

It must be emphasized, however, that although the components of v are different in
the two bases, the vector v itself remains unchanged, that is

v =
3∑

i=1

vi ei =
3∑

i=1

v′
i e

′
i. (2.9)

Furthermore, the above equation is the key to deriving a relationship between the
two sets of components. For this purpose, let Qij denote the dot products between
the two bases as

Qij = ei · e′
j . (2.10)

In fact, the definition of the dot product is such that Qij is the cosine of the angle
between ei and e′

j . Recalling Equation (2.6) for the components of a vector enables
the new base vectors to be expressed in terms of the old, or vice-versa, as

e′
j =

3∑
i=1

(e′
j · ei)ei =

3∑
i=1

Qij ei; (2.11a)
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ei =
3∑

j=1

(ei · e′
j)e′

j =
3∑

j=1

Qij e′
j . (2.11b)

Substituting for ei in Equation (2.6) from Equation (2.11b) gives, after simple
algebra, the old components of v in terms of the new components as

vi = v · ei

= v ·
3∑

j=1

Qije
′
j

=
3∑

j=1

Qij(v · e′
j) =

3∑
j=1

Qijv
′
j . (2.12a)

A similar derivation gives

v′
i =

3∑
j=1

Qjivj . (2.12b)

The above equations can be more easily expressed in matrix form with the help of
the 3 × 3 matrix [Q] containing the angle cosines Qij as

[v] = [Q][v]′; (2.13a)

[v]′ = [Q]T [v]; (2.13b)

where

[Q] =

⎡⎢⎣e1 · e′
1 e1 · e′

2 e1 · e′
3

e2 · e′
1 e2 · e′

2 e2 · e′
3

e3 · e′
1 e3 · e′

2 e3 · e′
3

⎤⎥⎦ . (2.14)

As a precursor to the discussion of second-order tensors, it is worth emphasiz-
ing the coordinate independent nature of vectors. For example, the vector equations
w = u + v or s = u · v make sense without specific reference to the basis used
to express the components of the vectors. Obviously, a vector will have different
components when expressed in a different basis – but the vector remains unchanged.
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EXAMPLE 2.1: Vector product

x3 x3

x2

x1

x1

x2

u

u × v

vQ

45°

45°

'

'

'

[Q] =
1√
2

⎡⎣ 1 −1 0
1 1 0
0 0

√
2

⎤⎦ ;

[u] =

⎡⎣1
2
0

⎤⎦ ;

[u]′ = [Q]T [u] =
1√
2

⎡⎣ 3
1
0

⎤⎦ ;

[v] =

⎡⎣0
1
1

⎤⎦ ; [v]′ = [Q]T [v] =
1√
2

⎡⎣ 1
1√
2

⎤⎦ .

As an example of the invariance of a vector under transformation consider the two
vectors u and v and the transformation [Q] shown above. The vector or cross product
of u and v is a third vector u × v whose components in any base are given as

[u× v] =

⎡⎣u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

⎤⎦ .

We can apply this equation in both systems of coordinates and obtain a different set
of components as

[u × v] =

⎡⎣ 2
−1

1

⎤⎦ ; [u × v]′ =
1√
2

⎡⎣ 1
−3√

2

⎤⎦ .

(continued)
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EXAMPLE 2.1: (cont.)

The fact that these two sets of components represent the same vector u×v can be ver-
ified by checking whether in accordance with Equation (2.13a) [u×v] = [Q][u×v]′.
This is clearly the case as⎡⎣ 2

−1
1

⎤⎦ =
1√
2

⎡⎣ 1 −1 0
1 1 0
0 0

√
2

⎤⎦ 1√
2

⎡⎣ 1
−3√

2

⎤⎦ .

2.2.2 Second-Order Tensors

A second-order tensor S is a linear mapping that associates a given vector u with
a second vector v as

v = Su. (2.15)

Italic boldface capitals will be used throughout this chapter to denote second-order
tensors. Later on, however, the distinction between lower- and upper-case quanti-
ties will be needed for more important purposes and no explicit differentiation will
be made between vectors and second-order tensors. The term linear in the above
definition is used to imply that given two arbitrary vectors u1 and u2 and arbitrary
scalars α and β, then

S(αu1 + βu2) = αSu1 + βSu2. (2.16)

Recognizing in Equation (2.15) that u and v are vectors and thus coordinate-
independent, the tensor S that operates on u to give v must also, in a similar sense,
have a coordinate-independent nature. If the vectors u and v can be expressed in
terms of components in a specific basis, namely, Equation (2.1), then it is to be
expected that the tensor S can somehow be expressed in terms of components in
the same basis; this is shown below. Consequently, a tensor will have different
components in different bases, but the tensor itself will remain unchanged.

The simple example of a second-order tensor that satisfies the above definition
is the identity tensor I , which maps any given vector u onto itself as

u = Iu. (2.17)
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Another example is the transformation tensor Q shown in Figure 2.2, which rotates
vectors in space in such a way that the standard Cartesian base vectors e1, e2, and
e3 become e′

1, e′
2, and e′

3, that is

e′
i = Qei; i = 1, 2, 3. (2.18)

The relationship between this important tensor and the angle cosines Qij introduced
in the previous section will be elaborated below.

Simple operations such as the sum, product, and inverse of second-order tensors
are defined in an obvious manner so that for any vector u

(S1 + S2)u = S1u + S2u; (2.19a)

(S1S2)u = S1(S2u); (2.19b)

S−1S = I . (2.19c)

Additionally, the transpose of a tensor S is defined as the tensor ST , which for any
two vectors u and v satisfies

u · Sv = v · ST u. (2.20)

For example, the transpose of the identity tensor is again the identity I , because
use of the above definition shows that for any pair of vectors u and v, IT satisfies

v · IT u = u · Iv

= u · v

= v · u

= v · Iu. (2.21)

A tensor S that, like the identity, satisfies ST = S is said to be symmetric; whereas
a tensor for which ST = −S is said to be skew. As an example of a skew tensor
consider the tensor Ww , associated with an arbitrary vector w, defined in such a
way that for any vector u

Ww u = w × u (2.22)

where × denotes the standard vector or cross product. Proof that Ww is skew
follows from the cyclic commutative property of the mixed vector product, which,
for any u and v, gives



30 M AT H E M AT I C A L P R E L I M I N A R I E S

v · W T
w u = u · Ww v

= u · (w × v)
= −v · (w × u)
= −v · Ww u. (2.23)

A final example of general interest is the transpose of the transformation tensor Q.
Applying the definition of the transpose tensor to the new and old base vectors and
recalling the definition of Q given in Equation (2.18) gives

ej · QT e′
i = e′

i · Qej

= e′
i · e′

j

= ej · ei; i, j = 1, 2, 3. (2.24)

Comparing the first and last expressions in this equation leads to

QT e′
i = ei; i = 1, 2, 3, (2.25)

which implies that the transpose tensor QT rotates the new base vectors e′
i back to

their original positions ei. Moreover, combining Equations (2.25) and (2.18) gives

QT Q = I . (2.26)

Tensors that satisfy this important property are said to be orthogonal. In fact, any
arbitrary second-order tensor A can be expressed as the sum of a symmetric plus a
skew tensor or as the product of an orthogonal times a symmetric tensor as

A = S + W ; ST = S, W T = −W ; (2.27a)

A = QS; ST = S, QT Q = I . (2.27b)

The first expression is rather trivial and follows from taking S = (A+AT )/2 and
W = (A − AT )/2; whereas the second, less obvious equation, is known as the
polar decomposition and plays a crucial role in continuum mechanics. Many exam-
ples of symmetric and skew tensors will occur throughout the remaining continuum
mechanics sections of this chapter.
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Second-order tensors can often be derived from the dyadic or tensor product of
two vectors u and v to give a tensor, denoted u ⊗ v, which to any arbitrary third
vector w assigns the following vector

(u ⊗ v)w = (w · v)u, (2.28)

where (w · v)u is obviously the projection in the u direction of the scalar
component of w in the v direction. This seemingly bizarre definition of the tensor
u ⊗ v transpires to make physical sense, particularly in the case of the stress tensor,
from which, incidentally, the word tensor originates, from the association with a
tensile stress.

The tensor product satisfies the following properties:

(u ⊗ v)T = (v ⊗ u); (2.29a)

S(u ⊗ v) = (Su ⊗ v); (2.29b)

(u ⊗ v)S = (u ⊗ ST v); (2.29c)

u ⊗ (v1 + v2) = u ⊗ v1 + u ⊗ v2. (2.29d)

EXAMPLE 2.2: Proof of (2.29b)

Any of the properties of the dyadic product can be easily demonstrated using its Def-
inition (2.28). For example, we can prove (2.29b) by showing that for any vector w

we have

S(u ⊗ v)w = S[(u ⊗ v)w]

= Su(v · w)

= (Su ⊗ v)w.

Now recall that a vector can be expressed in terms of a linear combination of the
base vectors e1, e2, and e3 as shown in Equation (2.1). Hence it is not unreasonable
to suggest that in a similar fashion a tensor could be expressed in terms of a linear
combination of dyadic products of these base vectors. In particular, the nine tensors
ei ⊗ ej for i, j = 1, 2, 3 obtained by the dyadic product of the three Cartesian
base vectors form a basis on which any second-order tensor can be expressed. For
instance, the identity tensor I can be written as

I =
3∑

i=1

ei ⊗ ei or I =
3∑

i, j=1

δij ei ⊗ ej . (2.30a,b)
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In order to verify these expressions simply note that when either equation is applied
to a vector u, use of Definition (2.28) together with Equations (2.6) and (2.19a)
gives

Iu =

(
3∑

i=1

ei ⊗ ei

)
u

=
3∑

i=1

(u · ei)ei

=
3∑

i=1

ui ei

= u. (2.31)

In general, we can express any given tensor S as a linear combination of ei ⊗ ej

in terms of a set of nine components Sij as

S =
3∑

i, j=1

Sij ei ⊗ ej , (2.32)

where the components Sij can be obtained in a manner similar to that used in
Equation (2.6) for vectors as

Sij = ei · Sej . (2.33)

Proof of this expression follows from Equations (2.32) and (2.28) as

ei · Sej = ei ·
(

3∑
k,l=1

Skl ek ⊗ el

)
ej

= ei ·
(

3∑
k,l=1

Skl(ej · el)ek

)

= ei ·
(

3∑
k,l=1

Sklδlj ek

)

=
3∑

k,l=1

Sklδljδik

= Sij . (2.34)
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For example, the transformation tensor Q can be expressed in terms of its compo-
nents Qij as

Q =
3∑

i, j=1

Qij ei ⊗ ej , (2.35)

where, using Equation (2.33) together with Equation (2.18), the components Qij

can now be seen to coincide with the angle cosines introduced in the previous
section as

Qij = ei · Qej = ei · e′
j . (2.36)

EXAMPLE 2.3: Components of u ⊗ v

We can evaluate the components of the tensor product u ⊗ v in two different ways.
Firstly, direct use of Equation (2.33) and Definition (2.28) gives

(u ⊗ v)ij = ei · (u ⊗ v)ej

= (ei · u)(v · ej)

= uivj .

Alternatively, use of Equation (2.1) and Property (2.29d) gives

(u ⊗ v) =

(
3∑

i=1

ui ei

)
⊗
(

3∑
j=1

vj ej

)

=
3∑

i.j=1

uivj ei ⊗ ej ,

from which the same components of the dyadic product are immediately identified.

The components of any second-order tensor S can be arranged in the form of
a 3 × 3 matrix as

[S] =

⎡⎢⎣S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤⎥⎦ . (2.37)
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For instance, use of Equation (2.33) shows that the skew tensor Ww defined in
Equation (2.22) can be written as

[Ww ] =

⎡⎣ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤⎦ , (2.38)

where w1, w2, and w3 are the components of w.
Tensorial expressions can now be duplicated in terms of matrix operations

with the tensor components. For instance, it is simple to show that the basic
Equation (2.15) becomes

[v] = [S][u]. (2.39)

Similar expressions apply for the sum, product, dyadic product, and transpose of
tensors as

[S1 + S2] = [S1] + [S2]; (2.40a)

[S1S2] = [S1][S2]; (2.40b)

[ST ] = [S]T ; (2.40c)

[u ⊗ v] = [u][v]T . (2.40d)

The association between second-order tensors and 3 × 3 matrices is thus identical
to that between vectors and column matrices. Similarly, the distinction between the
tensor and its components is only useful when more than one basis is being consid-
ered at the same time. Under such circumstances, a single tensor S is expressed by
two sets of components, [S]′ or S′

ij in the base e′
i ⊗ e′

j and [S] or Sij in the base
ei ⊗ ej as

S =
3∑

i, j=1

Sij ei ⊗ ej =
3∑

i, j=1

S′
ij e′

i ⊗ e′
j . (2.41)

Introducing the relationship between the new and old bases given by the angle
cosines as shown in Equations (2.11a–b) and after simple algebra, a relationship
between both sets of tensor components emerges as

[S]′ = [Q]T [S][Q] or S′
ij =

3∑
k,l=1

QkiSklQlj . (2.42)

It is often necessary to use second-order tensors relating vectors expressed in
different sets of Cartesian bases. This is illustrated in Example 2.4.
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EXAMPLE 2.4: Exploration of two-point second-order tensors

E1
e1

e2
e3

E2

E3
u

v

v = Su

The figure above shows a vector u in Cartesian basis Ei which is mapped (trans-
formed) into the vector v in a different Cartesian basis ei as

v = Su or
3∑

k=1

vkek = S

3∑
j=1

uj Ej .

Multiplying through by ei gives

ei ·
3∑

k=1

vkek = ei · S

3∑
j=1

uj Ej ;

3∑
k=1

vkδik =
(
S

3∑
j=1

uj Ej

)
· ei =

3∑
j=1

(ei · SEj) uj ;

alternatively, vi =
3∑

j=1

Sijuj where Sij = ei · SEj .

Clearly, the components Sij of the tensor S depend upon the bases in which the
vectors u and v are expressed. It is instructive to explore a little further to discover
how this dependency is expressed in terms of the tensor product ⊗ . The vector v

can be written as

v =
3∑

i, j=1

ujSij ei =
3∑

i, j=1

Sij

(
u · Ej

)
ei;

recall (2.28) to give

v =
3∑

i, j=1

Sij

(
ei ⊗ Ej

)
u.

Consequently,

S =
3∑

i, j=1

Sij

(
ei ⊗ Ej

)
.

(continued)
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EXAMPLE 2.4: (cont.)

It is now possible to rotate just one set of bases and examine the effect this has on the
components of the tensor S. For example, if the bases ei are rotated as e′

i = Qei,
see Equation (2.18), then the components of S with respect to the bases Ei and e′

i

can be obtained using Equation (2.11b) as follows.

S =
3∑

i, j=1

Sij

(
ei ⊗ Ej

)
=

3∑
i, j,k=1

Sij Qike′
k ⊗ Ej

=
3∑

i,k=1

S′
jke′

k ⊗ Ej ; S′
jk = Sij Qik.

Using Equation (2.42) and assuming some elementary knowledge of a two-
dimensional state of stresses, the invariant nature of the stress tensor is shown in
Example 2.5.

EXAMPLE 2.5: Tensor invariance

n

t

20°

x1

x2

x1

x2

'

'

[t] =
[

2.232
2.866

]
; [t]′ =

[
3.079
1.932

]
;

[n] =
[

0.866
0.500

]
; [n]′ =

[
0.985
0.174

]
;

[σ] =
[

2 1
1 4

]
; [σ]′ =

[
2.878 1.409
1.409 3.125

]
.

(continued)
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EXAMPLE 2.5: (cont.)

Consider a two-dimensional example of a stress tensor σ having Cartesian compo-
nents [σ] and an associated unit normal vector n having components [n]. The traction
force t having components [t] on the surface normal to n is

[t] = [σ] [n] or

[
2.232
2.866

]
=
[

2 1
1 4

] [
0.866
0.500

]
.

Now rotate the Cartesian axes anticlockwise through an angle α = 20◦ in which the
same stress tensor σ now has components [σ]′ and the normal vector n components
[n]′. The traction vector t having components [t]′ on the surface normal to n is

[t]′ = [σ]′ [n]′ or

[
3.079
1.932

]
=
[

2.878 1.409
1.409 3.125

] [
0.985
0.174

]
.

The vectors n and t have remained unchanged even though their components
have changed. Likewise the stress tensor σ has remained unchanged in that it is that
which operates on n to give t, even though its components have changed. Hence, the
general expression t = σn can justifiably be written.

Noting that from Equation (2.13) [t]′ = [Q]T [t] and [n]′ = [Q]T [n] it is easy

to show that

[σ]′ = [Q]T [σ] [Q] ; [Q] =
[
cos α − sin α

sin α cos α

]
.

2.2.3 Vector and Tensor Invariants

The above sections have shown that when different bases are used, vectors and ten-
sors manifest themselves via different sets of components. An interesting exception
to this rule is the case of the identity tensor or its multiples αI . Using Equation (2.42)
it is easy to show that the components of these tensors remain unchanged by the
rotation of the axes as

[αI ]′ = [Q]T [αI ][Q]

= α[QT Q]

= [αI ]. (2.43)

Tensors that satisfy this property are said to be isotropic and are used in continuum
mechanics to describe materials that exhibit identical properties in all directions.
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In general, however, the components of vectors and second-order tensors will
change when the axes are rotated. Nevertheless, certain intrinsic magnitudes asso-
ciated with them will remain invariant under such transformations. For example,
the scalar product between two vectors u and v, defined in Section 2.2.1 as

u · v =
3∑

i=1

uivi = [u]T [v] (2.44)

remains invariant when the components change as a result of a rotationQ of the axes.
This is easily proved with the help of Equation (2.13a) and the orthogonality of Q as

u · v = [u]T [v]

= ([Q][u]′)T [Q][v]′

= ([u]′)T [QT Q][v]′

= ([u]′)T [v]′. (2.45)

Consequently, the modulus or magnitude of a vector, defined as

‖u‖ =
√

u · u (2.46)

is an invariant, that is, an intrinsic physical property of the vector.
Insofar as tensors can be expressed in terms of dyadic products of base vectors

it is reasonable to inquire if invariant quantities can be associated with tensors. This
is indeed the case, and the first of these magnitudes, denoted as IS , is given by the
trace which is defined as the sum of the diagonal components of the tensor S as

IS = trS =
3∑

i=1

Sii. (2.47)

The invariance of this magnitude can be easily checked using Equation (2.41) in an
indicial form and recalling the orthogonality of Q given by Equation (2.26), to give

3∑
i=1

S′
ii =

3∑
i,k,l=1

QkiSklQli

=
3∑

k,l=1

Sklδkl

=
3∑

k=1

Skk. (2.48)
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Some useful and simple-to-prove properties of the trace are

tr(u ⊗ v) = u · v; (2.49a)

trST = trS; (2.49b)

trS1S2 = trS2S1. (2.49c)

EXAMPLE 2.6: Proof of Equation (2.49a)

Property (2.49a) follows from the components of the dyadic product discussed in
Example 2.3 and the definition of the scalar product as

tr(u ⊗ v) =
3∑

i=1

(u ⊗ v)ii

=
3∑

i=1

uivi

= u · v.

Analogous to the scalar product of vectors, the double product or double con-
traction of two tensors A and B is an invariant magnitude defined in terms of the
trace as

A : B = tr(AT B), (2.50)

which recalling the properties of the trace can be variously written as

A : B = tr(AT B) = tr(BAT ) = tr(BT A) = tr(ABT ) =
3∑

i, j=1

AijBij .

(2.51)

Further useful properties of the double contraction are

trS = I : S; (2.52a)

S : (u ⊗ v) = u · Sv; (2.52b)

(u ⊗ v) : (x ⊗ y) = (u · x)(v · y); (2.52c)

S : W = 0 if ST = S and W T = −W (2.52d)

A second independent invariant of a tensor S can now be defined as*

IIS = S : S. (2.53)

* In other texts the following alternative definition is frequently used:

IIS = 1
2

(
I2
S − S : S

)
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A third and final invariant of a second-order tensor is provided by its determi-
nant, which is simply defined as the determinant of the matrix of components as

IIIS = detS = det[S]. (2.54)

Proof of the invariance of the determinant follows easily from Equation (2.42) and
the orthogonality of the transformation tensor Q as

det [S]′ = det([Q]T [S][Q])

= det[Q]T det[S] det[Q]

= det[QT Q] det[S]

= det[S]. (2.55)

An alternative way in which invariant magnitudes of second-order tensors can
be explored is by studying the existence of eigenvectors and eigenvalues. For a given
tensor S, a vector n is said to be an eigenvector with an associated eigenvalue λ if

Sn = λn. (2.56)

Linear algebra theory shows that the eigenvalues λ that satisfy the above equation
are the roots of a third-degree polynomial obtained as

det(S − λI) = 0. (2.57)

In general, however, the roots of such an equation can be imaginary and hence of lit-
tle practical use. An important exception is the case of symmetric tensors, for which
it is possible to prove not only that there exist three real roots of Equation (2.57),
λ1, λ2, and λ3, but also that the three corresponding eigenvectors n1, n2, and n3

are orthogonal, that is

Sni = λini; i = 1, 2, 3; (2.58a)

ni · nj = δij ; i, j = 1, 2, 3. (2.58b)

Consequently, the above unit eigenvectors can be used as an alternative Cartesian
base in which Equations (2.33) and (2.58a) show that the off-diagonal components
of S vanish whereas the three diagonal components are precisely the eigenvalues
λi. Accordingly, the symmetric tensor S can be conveniently written as

S =
3∑

i=1

λi ni ⊗ ni. (2.59)
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The eigenvalues of a symmetric tensor are independent of the Cartesian axes cho-
sen and therefore constitute an alternative set of invariants. Finally, relationships
between the invariants IS , IIS , and IIIS and the eigenvalues can be derived by
applying Definitions (2.47), (2.53), and (2.54) to Equation (2.59) to give

IS = λ1 + λ2 + λ3; (2.60a)

IIS = λ2
1 + λ2

2 + λ2
3; (2.60b)

IIIS = λ1 λ2 λ3. (2.60c)

2.2.4 Higher-Order Tensors

It will be seen later in Chapter 6 that the second-order stress and strain tensors
are related via a fourth-order constitutive or material behavior tensor. In order to
appreciate fourth-order tensors it is necessary to examine the intermediate third-
order tensors. Inevitably, things are likely to get more difficult and because an
appreciation of this section is not immediately necessary, it is suggested that what
follows be read just prior to Chapter 6.

Although there are several ways in which higher-order tensors can be defined,
the procedure used here is a simple extension of Definition (2.15), employed for
second-order tensors. In this way, a third-order tensor is defined as a linear map
from an arbitrary vector u to a second-order tensor S as

Au = S. (2.61)

In particular, the tensor product of three arbitrary vectors yields a third-order tensor
u ⊗ v ⊗ w defined in a manner similar to Equation (2.28) so that any vector x is
mapped to

(u ⊗ v ⊗ w)x = (w · x)(u ⊗ v). (2.62)

This definition combined with the fact that second-order tensors can be expressed
as linear combinations of dyadic products leads to the following expressions for
the tensor product of a vector and a second-order tensor as

(S ⊗ v)u = (u · v)S; (2.63a)

(v ⊗ S)u = v ⊗ (Su). (2.63b)
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The 27 third-order tensors ei ⊗ ej ⊗ ek for i, j, k = 1, 2, 3, which are obtained
by taking the tensor products of the three Cartesian base vectors, constitute a basis
in which any third-order tensor A can be expressed as

A =
3∑

i, j,k=1

Aijk ei ⊗ ej ⊗ ek, (2.64)

where a manipulation similar to that employed in Equation (2.33) for second-order
tensors will verify that the components of A are

Aijk = (ei ⊗ ej) : Aek. (2.65)

An example of a third-order tensor of interest in continuum mechanics is the
alternating tensor E , which is defined in such a way that any vector w is mapped to

Ew = −Ww , (2.66)

where Ww is the second-order tensor defined in Equation (2.22). The components
of E follow from Equations (2.65–2.66) and (2.22) as

Eijk = (ei ⊗ ej) : (Eek)

= −(ei ⊗ ej) : W ek

= −ei · (W ek
ej)

= ei · (ej × ek). (2.67)

The result of the above triple product is 0 if any indices are repeated, 1 if the
permutation {i, j, k} is even, and −1 otherwise. Note that exactly the same com-
ponents would be obtained if a different Cartesian base were used, that is, E is an
isotropic third-order tensor. Using these {0, 1,−1} components, the tensor E can
be expressed as

E = e1 ⊗ e2 ⊗ e3 + e3 ⊗ e1 ⊗ e2 + e2 ⊗ e3 ⊗ e1

−e3 ⊗ e2 ⊗ e1 − e1 ⊗ e3 ⊗ e2 − e2 ⊗ e1 ⊗ e3. (2.68)

The double contraction of a third-order tensor and a second-order tensor is
defined in such a way that for the dyadic product of any two vectors u and v a new
vector is obtained as

A : (u ⊗ v) = (Av)u. (2.69)
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Note that the result of the double contraction is a vector and not a scalar. In fact,
third-order tensors can be alternatively defined as linear maps from second-order
tensors to vectors as shown in the above double contraction. For example, applying
the above definition to the alternating tensor gives

E : (u ⊗ v) = (Ev)u

= −Wv u

= u × v. (2.70)

This result, instead of Equation (2.66), could have been used to define the alternating
tensor E .

In general, the double contraction of a third-order tensor by a second-order
tensor S can be evaluated in terms of their respective components using Defini-
tion (2.69) together with Equations (2.32) and (2.65) to give

A : S =
3∑

i, j,k=1

AijkSjk ei. (2.71)

Additional properties of the double contraction are given below without proof

(u ⊗ v ⊗ w) : (x ⊗ y) = (x · v)(y · w)u; (2.72a)

(u ⊗ S) : T = (S : T )u; (2.72b)

(S ⊗ u) : T = STu. (2.72c)

EXAMPLE 2.7: Proof of Equation (2.71)

In order to prove Equation (2.71), we first express both tensors A and S in terms of
their components as

A =
3∑

i, j,k=1

Aijk ei ⊗ ej ⊗ ek; S =
3∑

l,m=1

Slm el ⊗ em

Taking the double contraction now gives

A : S =
3∑

i, j,k,l,m=1

AijkSlm(ei ⊗ ej ⊗ ek) : (el ⊗ em)

=
3∑

i, j,k,l,m=1

AijkSlm[(ei ⊗ ej ⊗ ek)em]el

(continued)
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EXAMPLE 2.7: (cont.)

=
3∑

i, j,k,l,m=1

AijkSlm(ek · em)(ej · el)ei

=
3∑

i, j,k,l,m=1

AijkSlmδkmδjl ei

=
3∑

i, j,k=1

AijkSjk ei.

Tensors of any order can now be defined by recursive use of Equation (2.61).
For instance, a fourth-order tensor C is a linear map between an arbitrary vector u

and a third-order tensor A as

Cu = A (2.73)

Observe that no explicit notational distinction is made between third-, fourth-, or any
higher-order tensors. Examples of fourth-order tensors are obtained by extending
the definition of the tensor product of vectors in the obvious way to give

(u1 ⊗ u2 ⊗ u3 ⊗ u4)v = (v · u4)(u1 ⊗ u2 ⊗ u3) (2.74)

Similar tensor products of a vector and a third-order tensor and second-order tensors
are inferred from the above definition as

(A ⊗ u)v = (u · v)A (2.75a)

(u ⊗ A)v = u ⊗ (Av) (2.75b)

(T ⊗ S)v = T ⊗ (Sv) (2.75c)

Additionally, the double contraction of a fourth- (or higher-) order tensor C with a
second-order tensor is again defined using Equation (2.69) to yield a second-order
tensor as

C : (u ⊗ v) = (Cv)u. (2.76)

An illustration of this would be the crucially important constitutive relationship
between a second-order stress tensor σ and a second-order strain tensor ε given as
σ = C : ε, where C would be a fourth-order elasticity tensor.
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Properties similar to those listed in Equations (2.72a–c) are obtained as

(u1 ⊗ u2 ⊗ u3 ⊗ u4) : (x ⊗ y) = (x · u3)(y · u4)(u1 ⊗ u2); (2.77a)

(S1 ⊗ S2) : T = (S2 : T )S1; (2.77b)

(A ⊗ u) : T = A(Tu); (2.77c)

(u ⊗ A) : T = u ⊗ (A : T ). (2.77d)

Recalling that the double contraction of a fourth-order tensor with a second-order
tensor gives a second-order tensor, fourth-order tensors can be also defined as linear
mappings between second-order tensors. For instance, the fourth-order identity ten-
sor I and the transposition tensor Ĩ are defined in such a way that any second-order
tensor S is mapped onto itself and its transpose respectively as

I : S = S; (2.78a)

Ĩ : S = ST . (2.78b)

Fourth-order tensors can be expressed as linear combinations of the 81 tensor
products of the Cartesian base vectors ei ⊗ ej ⊗ ek ⊗ el for i, j, k, l = 1, 2, 3 as

C =
3∑

i, j,k,l=1

Cijkl ei ⊗ ej ⊗ ek ⊗ el, (2.79a)

where it can be proved that the components Cijkl are given as

Cijkl = (ei ⊗ ej) : C : (ek ⊗ el). (2.79b)

For instance, the components of I are obtained with the help of Equations (2.79a,b)
and (2.52c) as

Iijkl = (ei ⊗ ej) : I : (ek ⊗ el)

= (ei ⊗ ej) : (ek ⊗ el)

= (ei · ek)(ej · el)

= δikδjl; (2.80)

and, similarly, the components of Ĩ are

Ĩijkl = (ei ⊗ ej) : Ĩ : (ek ⊗ el )

= (ei ⊗ ej) : (el ⊗ ek)

= (ei · el)(ej · ek)

= δilδjk. (2.81)
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Consequently, these two tensors can be expressed as

I =
3∑

i ,j=1

ei ⊗ ej ⊗ ei ⊗ ej ; (2.82a)

Ĩ =
3∑

i ,j=1

ei ⊗ ej ⊗ ej ⊗ ei . (2.82b)

Observe that both these tensors are isotropic, as the same components would emerge
from Equations (2.80) and (2.81) regardless of the Cartesian base being used.
Isotropic fourth-order tensors are of particular interest in continuum mechanics
because they will be used to describe the elasticity tensor of materials that exhibit
equal properties in all directions. In fact, it is possible to prove that all fourth-
order isotropic tensors are combinations of I , Ĩ and the additional isotropic tensor
I ⊗ I as

C = αI ⊗ I + βI + γĨ. (2.83)

Examples of such combinations are the tensors S, W , and D defined as

S = 1
2(I + Ĩ); (2.84a)

W = 1
2(I − Ĩ); (2.84b)

D = I − 1
3I ⊗ I ; (2.84c)

which project a second-order tensor S onto its symmetric, skew, and deviatoric
components as

S : S = 1
2(S + ST ); (2.85a)

W : S = 1
2(S − ST ); (2.85b)

D : S = S′ = S − 1
3(trS)I . (2.85c)

Finally, the definition of symmetric second-order tensors given in the previous
section can be extended to fourth-order tensors. In this way a fourth-order tensor
C is said to be symmetric if for any arbitrary second-order tensors S and T , the
following expression is satisfied:

S : C : T = T : C : S. (2.86)

For example, it is easy to show that I ⊗ I , I , and Ĩ are symmetric fourth-order
tensors and consequently combinations of these three tensors such as S, W , and
D are also symmetric.
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EXAMPLE 2.8: Elasticity tensor

In linear isotropic elasticity the stress tensor σ is related to the small strain tensor ε

by the Lamé material coefficients λ and μ as

σ = λ(trε)I + 2με.

This equation can be rewritten in terms of the fourth-order elasticity tensor C as

σ = C : ε; C = λI ⊗ I + μ(I + Ĩ); Cijkl = λδijδkl + μ(δikδjl + δilδjk).

Alternatively, the above relationship can be inverted to give the strain expressed in
terms of the stress tensor. To achieve this, note first that taking the trace of the above
stress–strain equation gives

trσ = (3λ + 2μ)trε,

and consequently ε can be written as

ε =
1
2μ

σ − λtrσ
2μ(3λ + 2μ)

I ,

or in terms of the Young’s modulus E and Poisson’s ratio ν as

ε =
1
E

[(1 + ν)σ − ν(trσ)I ]; E =
μ(3λ + 2μ)

λ + μ
; ν =

λ

2λ + 2μ
.

Hence the inverse elasticity tensor can be defined as

ε = C−1 : σ; C−1 = − ν

E
I ⊗ I +

1 + ν

E
I.

2.3 LINEARIZATION AND THE DIRECTIONAL

DERIVATIVE

Nonlinear problems in continuum mechanics are invariably solved by linearizing
the nonlinear equations and iteratively solving the resulting linear equations until
a solution to the nonlinear problem is found. The Newton–Raphson method is the
most popular example of such a technique. Correct linearization of the nonlinear
equations is fundamental for the success of such techniques. In this section we will
consolidate the concept of the directional derivative introduced in Chapter 1. The
familiar Newton–Raphson scheme will be used as the initial vehicle for exploring
the ideas that will eventually be generalized.
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2.3.1 One Degree of Freedom

Consider the one-degree-of-freedom nonlinear equation shown in Figure 2.3:

f(x) = 0. (2.87)

Given an initial guess of the solution, x0, the function f(x) can be expressed
in the neighborhood of x0 using a Taylor’s series as

f(x) = f(x0) +
df

dx

∣∣∣∣
x0

(x − x0) +
1
2

d2f

dx2

∣∣∣∣
x0

(x − x0)2 + · · · (2.88)

If the increment in x is expressed as u = (x − x0) then (2.88) can be rewritten as

f(x0 + u) = f(x0) +
df

dx

∣∣∣∣
x0

u +
1
2

d2f

dx2

∣∣∣∣
x0

u2 + · · · (2.89)

To establish the Newton–Raphson procedure for this single-degree-of-freedom
case, (2.89) is linearized by truncating the Taylor’s expression to give

f(x0 + u) ≈ f(x0) +
df

dx

∣∣∣∣
x0

u. (2.90)

This is clearly a linear function in u, and the term u(df/dx)|x0 is called the lin-
earized increment in f(x) at x0 with respect to u. This is generally expressed as

Df(x0)[u] =
df

dx

∣∣∣∣
x0

u ≈ f(x0 + u) − f(x0). (2.91)

f (x0)

f

x
x0 x1 x2

FIGURE 2.3 One-degree-of-freedom nonlinear problem, f(x) = 0.
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The symbol Df(x0)[u] denotes a derivative, formed at x0, that operates in some
linear manner (not necessarily multiplicative as here) on u.

Using Equation (2.90) the Newton–Raphson iterative procedure is set up by
requiring the function f(xk + u) to vanish, thus giving a linear equation in u as

f(xk) + Df(xk)[u] = 0, (2.92)

from which the new iterative value xk+1, illustrated in Figure 2.3, is obtained as

u =

[
− df

dx

∣∣∣∣
xk

]−1

f(xk); xk+1 = xk + u. (2.93)

This simple one-degree-of-freedom case will now be generalized in order to
further develop the concept of the directional derivative.

2.3.2 General Solution to a Nonlinear Problem

Consider a set of general nonlinear equations given as

F(x) = 0, (2.94)

where the function F(x) can represent anything from a system of nonlinear alge-
braic equations to more complex cases such as nonlinear differential equations
where the unknowns x could be sets of functions. Consequently, x represents a list
of unknown variables or functions.

Consider an initial guess x0 and a general change or increment u that, it is hoped,
will generate x = x0 +u closer to the solution of Equation (2.94). In order to repli-
cate the example given in Section 2.3.1 and because, in general, it is not immediately
obvious how to express the derivative of a complicated function F with respect to
what could also be a function x, a single artificial parameter ε is introduced that
enables a nonlinear function F in ε, (not equal to F ), to be established as

F(ε) = F(x0 + εu). (2.95)

For example, in the one-degree-of-freedom case, discussed in Section 2.3.1, F(ε)
becomes

F (ε) = f(x0 + εu). (2.96)

This is illustrated for the one-degree-of-freedom case in Figure 2.4.
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A more general case, illustrating Equation (2.95), involving two unknown vari-
ables x1 and x2 is shown in Figure 2.5. Observe how ε changes the function F in
the direction u and that clearly F(ε) �= F(x).

In order to develop the Newton–Raphson method together with the associated
linearized equations, a Taylor’s series expansion of the nonlinear function F(ε)
about ε = 0, corresponding to x = x0, gives

F(ε) = F(0) +
dF
dε

∣∣∣∣
ε=0

ε +
1
2

d2F
dε2

∣∣∣∣
ε=0

ε2 + · · · (2.97)

x0

x

0 1 2 3

u
ε

10 2

F(0)

f F(ε)

f (x0)

ε

FIGURE 2.4 Single-degree-of-freedom nonlinear problem f(x) = 0 and F (ε) = 0.

x1

x2

f

f (x1, x2)

u

x0

ε

ε
0

F(ε)

1 2

FIGURE 2.5 Two-degrees-of-freedom nonlinear problem, f(x1, x2) = 0 and F (ε) = 0.
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Introducing the definition of F given in Equation (2.95) into the above Taylor’s
series yields

F(x0 + εu) = F(x0) + ε
d

dε

∣∣∣∣
ε=0

F(x0 + εu) +
ε2

2
d2

dε2

∣∣∣∣
ε=0

F(x0 + εu) + · · ·

(2.98)

Truncating this Taylor’s series gives the change, or increment, in the nonlinear
function F(x) as

F(x0 + εu) − F(x0) ≈ ε
d

dε

∣∣∣∣
ε=0

F(x0 + εu). (2.99)

Note that in this equation ε is an artificial parameter that is simply being used as a
vehicle to perform the derivative. In order to eliminate ε from the left-hand side of
this equation, let ε = 1, thereby giving a linear approximation to the increment of
F(x) as

F(x0 + u) − F(x0) ≈ 1
d

dε

∣∣∣∣
ε=0

F(x0 + εu), (2.100)

where the term on the right-hand side of the above equation is the directional
derivative of F(x) at x0 in the direction of u and is written as

DF(x0)[u] =
d

dε

∣∣∣∣
ε=0

F(x0 + εu). (2.101)

Note that u could be a list of variables or functions, hence the term “in the direc-
tion” is, at the moment, extremely general in its interpretation. With the help of
the directional derivative the value of F(x0 + u) can now be linearized or linearly
approximated as

F(x0 + u) ≈ F(x0) + DF(x0)[u]. (2.102)

Returning to the nonlinear Equation (2.94), setting F(x0 + u) = 0 in Equa-
tion (2.102) gives

F(x0) + DF(x0)[u] = 0, (2.103)
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which is a linear equation with respect to u.* Assuming that Equation 2.103 can be
solved for u, then a general Newton–Raphson procedure can be re-established as

DF(xk)[u] = −F(xk) ; xk+1 = xk + u. (2.104)

2.3.3 Properties of the Directional Derivative

The directional derivative defined above satisfies the usual properties of the deriva-
tive. These are listed for completeness below:

(a) If F(x) = F1(x) + F2(x) then

DF(x0)[u] = DF1(x0)[u] + DF2(x0)[u]. (2.105a)

(b) The product rule: if F(x) = F1(x) · F2(x), where “ · ” means any type of
product, then

DF(x0)[u] = DF1(x0)[u] · F2(x0) + F1(x0) · DF2(x0)[u]. (2.105b)

(c) The chain rule: if F(x) = F1(F2(x)) then

DF(x0)[u] = DF1(F2(x0))[DF2(x0)[u]]. (2.105c)

EXAMPLE 2.9: Interpretation of Equation (2.105c)

The chain rule Equation (2.105c) is not easy to interpret. In an attempt to clarify the
meaning of this equation consider the approximation statement

F(x0 + u) ≈ F(x0) + DF(x0)[u].

In the case where F(x) = F1(F2(x)) the left-hand side becomes

F(x0 + u) = F1(F2(x0 + u)),

(continued)

* The term DF(x0)[u] is linear with respect to u in the sense that for any u1 and u2:

DF(x0)[u1 + u2] = DF(x0)[u1] + DF(x0)[u2].
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EXAMPLE 2.9: (cont.)

and using the linearization of F2 this can be written as

F(x0 + u) ≈ F1(F2(x0) + DF2(x0)[u]).

Now linearizing F1 at F2(x0) in the direction of the increment DF2(x0)[u] gives

F(x0 + u) ≈ F1(F2(x0)) + DF1(F2(x0))[DF2(x0)[u]].

Comparing the first and last equations gives Equation (2.105c).

2.3.4 Examples of Linearization

Algebraic systems of equations. Consider a set of nonlinear algebraic equations
f(x) = [ f1, f2, . . . , fn]T with unknowns x = [x1, x2, . . . , xn]T as

f1(x1, x2, . . . , xn) = 0;

f2(x1, x2, . . . , xn) = 0;
(2.106)...

fn(x1, x2, . . . , xn) = 0.

The directional derivative of f(x) at a solution estimate x0 in the general direction
u = [u1, u2, . . . , un]T is given by (2.101) as

Df(x0)[u] =
d

dε

∣∣∣∣
ε=0

f(x0 + εu). (2.107)

The above expression can be evaluated using the standard chain rule for the partial
derivatives of a function of several variables as

Df(x0)[u] =
d

dε

∣∣∣∣
ε=0

f(x0 + εu)

=
n∑

i=1

∂f
∂xi

∣∣∣∣
xi=x0,i

d(x0,i + εui)
dε

∣∣∣∣
ε=0

=
n∑

i=1

ui
∂f
∂xi

∣∣∣∣
xi=x0,i

= K(x0)u, (2.108)
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where the tangent matrix K is

K =

⎡⎢⎢⎢⎢⎢⎣
∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn

⎤⎥⎥⎥⎥⎥⎦ . (2.109)

Consequently, the Newton–Raphson iterative scheme becomes

K(xk)u = −f(xk); xk+1 = xk + u. (2.110)

Function minimization. The directional derivative given in (2.101) need not
be necessarily associated with the Newton–Raphson method and can be equally
applied to other purposes. An interesting application is the minimization of a func-
tional, which is a familiar problem that often arises in continuum or structural
mechanics. For example, consider the total potential energy for a simply supported
beam under the action of a uniformly distributed load q(x) given as (Figure 2.6)

V(w(x)) =
1
2

∫ l

0
EI

(
d2w(x)

dx2

)2

dx −
∫ l

0
q(x)w(x) dx, (2.111)

where w(x) is the lateral deflection (which satisfies the boundary conditions a pri-
ori), E is Young’s modulus, I is the second moment of area, and l is the length
of the beam. A functional such as V is said to be stationary at point w0(x) when
the directional derivative of V vanishes for any arbitrary increment u(x) in w0(x).
Consequently, the equilibrium position w0(x) satisfies

DV(w0(x))[u(x)] =
d

dε

∣∣∣∣
ε=0

V(w0(x) + εu(x)) = 0 (2.112)

w(x)

q(x)

FIGURE 2.6 Simply supported beam.
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for any function u(x) compatible with the boundary conditions. Note that w0(x)
is the unknown function in the problem and is not to be confused with a Newton–
Raphson iterative estimate of the solution. Substituting for V in (2.112) from
(2.111) gives

DV(w0(x))[u(x)] =
d

dε

∣∣∣∣
ε=0

1
2

∫ l

0
EI

[
d2(w0(x) + εu(x))

dx2

]2
dx

− d

dε

∣∣∣∣
ε=0

∫ l

0
q(x)(w0(x) + εu(x))dx = 0. (2.113)

Hence

DV(w0(x))[u(x)] =
∫ l

0
EI

d2w0(x)
dx2

d2u(x)
dx2 dx −

∫ l

0
q(x)u(x) dx = 0.

(2.114)

If u(x) is considered to be the virtual displacement δu(x) then the above equation is
easily recognized as the virtual work equation for the beam, which is an alternative
expression of equilibrium.

Linearization of the determinant of a tensor. This example further illustrates
the generality of the concept of the linearization obtained using the directional
derivative. Consider the linearization of the determinant det S of the second-order
tensor S (or square matrix) with respect to an increment in this tensor U as

det(S + U) ≈ det S + D det(S)[U ], (2.115)

where the directional derivative of the determinant can be found by direct applica-
tion of Equation (2.111) as

D det(S)[U ] =
d

dε

∣∣∣∣
ε=0

det(S + εU)

=
d

dε

∣∣∣∣
ε=0

det[S(I + εS−1U)]

= det S
d

dε

∣∣∣∣
ε=0

det(I + εS−1U). (2.116)
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In order to proceed, note that the characteristic equation of a matrix B with eigen-
values λB

1 , λB
2 , and λB

3 is

det(B − λI) =
(
λB

1 − λ
)(

λB
2 − λ

)(
λB

3 − λ
)
. (2.117)

Using this equation with λ = −1 and B = εS−1U gives

D det(S)[U ] = detS
d

dε

∣∣∣∣
ε=0

(
1 + ελS−1U

1
)(

1 + ελS−1U
2

)(
1 + ελS−1U

3
)
,

(2.118)

where λS−1U
1 , λS−1U

2 , and λS−1U
3 are the eigenvalues of S−1U . Using the standard

product rule of differentiation in (2.118) and recalling the definition and properties
of the trace of a tensor introduced in Section 2.2.3 gives the directional derivative
of the determinant of a tensor as

D det(S)[U ] = detS
(
λS−1U

1 + λS−1U
2 + λS−1U

3
)

= det S tr(S−1U)

= det S (S−T : U). (2.119)

Linearization of the inverse of a tensor. Finally, consider the linearization of
the inverse of a tensor (or square matrix) S with respect to an increment in this
matrix U as

(S + U)−1 ≈ S−1 + D(S−1)[U ], (2.120)

where the directional derivative is given as

D(S−1)[U ] =
d

dε

∣∣∣∣
ε=0

(S + εU)−1. (2.121)

Clearly, the evaluation of this derivative is far from obvious. A simple procedure to
evaluate this linearization, however, emerges from the product rule property given
in Equation (2.105b). For this purpose, note first that the linearization of I , the
identity tensor, is the null tensor 0, because I is independent of the increment U ,
that is

D(S−1S)[U ] = D(I)[U ] = 0. (2.122)

Consequently, using the product rule gives

D(S−1)[U ]S + S−1D(S)[U ] = 0, (2.123)
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which, after some simple algebra, leads to

D(S−1)[U ] = −S−1US−1. (2.124)

EXAMPLE 2.10: Linearization of det (S−1)

An interesting application of the chain rule Equation (2.105c) is obtained by com-
bining the linearizations of the determinant and the inverse of a tensor into the lin-
earization of the functional det S−1. First, note that the directional derivative of this
functional can be obtained directly by noting that det(S−1) = 1/ det S and using
Equation (2.119) to give

D det(S−1)[U ] =
d

dε

∣∣∣∣
ε=0

det(S + εU)−1

=
d

dε

∣∣∣∣
ε=0

1
det(S + εU)

=
−1

(detS)2
d

dε

∣∣∣∣
ε=0

det(S + εU)

= −det(S−1)(S−T : U).

An alternative route can be followed to reach the same result by using the chain rule
Equation (2.105c) and both Equations (2.119) and (2.124) to give

D det(S−1)[U ] = det(S−1)(ST : DS−1[U ])

= −det(S−1)(ST : (S−1US−1))

= −det(S−1)(S−T : U).

2.4 TENSOR ANALYSIS

Section 2.2 dealt with constant vectors and tensors. In contrast, such items in contin-
uum mechanics invariably change from point to point throughout a problem domain.
The resulting magnitudes are known as fields in a three-dimensional Cartesian space
and can be of a scalar, vector, or tensor nature. Examples of scalar fields are the
temperature or density of a body. Alternatively, the velocity of the body particles
would constitute a vector field and the stresses a tensor field. The study of these
quantities requires operations such as differentiation and integration, which are the
subject of tensor analysis.
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2.4.1 The Gradient and Divergence Operators

Consider first a scalar field, that is, a function f(x) that varies throughout a three-
dimensional space. At a given point x0, the change in f in the direction of an
arbitrary incremental vector u is given by a vector ∇f(x0) known as the gradient
of f at x0, which is defined in terms of the directional derivative as

∇f(x0) · u = Df(x0)[u]. (2.125)

The components of the gradient can be obtained by using the definition of the
directional derivative (2.101) in the above equation to give

∇f(x0) · u =
d

dε

∣∣∣∣
ε=0

f(x0 + εu)

=
3∑

i=1

∂f

∂xi

∣∣∣∣
ε=0

d(x0,i + εui)
dε

∣∣∣∣
ε=0

=
3∑

i=1

ui
∂f

∂xi

∣∣∣∣
xi=x0,i

. (2.126)

Hence the components of the gradient are the partial derivatives of the function f

in each of the three spatial direction as

∇f =
3∑

i=1

∂f

∂xi
ei. (2.127)

For obvious reasons, the following alternative notation is frequently used:

∇f =
∂f

∂x
. (2.128)

The gradient of a vector field v at a point x0 is a second-order tensor ∇v(x0)
that maps an arbitrary vector u into the directional derivative of v at x0 in the
direction of u as

∇v(x0)u = Dv(x0)[u]. (2.129)

A procedure identical to that employed in Equation (2.126) shows that the compo-
nents of this gradient tensor are simply the partial derivatives of the vector compo-
nents, thereby leading to the following expression and useful alternative notation

∇v =
3∑

i, j=1

∂vi

∂xj
ei ⊗ ej ; ∇v =

∂v

∂x
. (2.130)
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The trace of the gradient of a vector field defines the divergence of such a field
as a scalar, div v, which can be variously written as

div v = tr∇v = ∇v : I =
3∑

i=1

∂vi

∂xi
. (2.131)

Similarly to Equation (2.129), the gradient of a second-order tensor S at x0 is
a third-order tensor ∇S(x0), which maps an arbitrary vector u to the directional
derivative of S at x0 as

∇S(x0)u = DS(x0)[u]. (2.132)

Moreover, the components of ∇S are again the partial derivatives of the compo-
nents of S and consequently

∇S =
3∑

i, j,k=1

∂Sij

∂xk
ei ⊗ ej ⊗ ek; ∇S =

∂S

∂x
. (2.133)

Additionally, the divergence of a second-order tensor S is the vector div S, which
results from the double contraction of the gradient ∇S with the identity tensor as

div S = ∇S : I =
3∑

i, j=1

∂Sij

∂xj
ei. (2.134)

Finally, the following useful properties of the gradient and divergence are a
result of the product rule

∇(fv) = f∇v + v ⊗ ∇f ; (2.135a)

div (fv) = fdiv v + v · ∇f ; (2.135b)

∇(v · w) = (∇v)T w + (∇w)T v; (2.135c)

div (v ⊗ w) = v div w + (∇v)w; (2.135d)

div (ST v) = S : ∇v + v · div S; (2.135e)

div (fS) = f div S + S∇f ; (2.135f)

∇(fS) = f∇S + S ⊗ ∇f. (2.135g)
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EXAMPLE 2.11: Proof of Equation (2.135e)

Any one of Equations (2.135a–g) can be easily proved in component form with the
help of the product rule. For example, using Equations (2.131) and (2.134) gives
(2.135e) as

div (ST v) =
3∑

i, j=1

∂

∂xj
(Sijvi)

=
3∑

i, j=1

Sij
∂vi

∂xj
+ vi

∂Sij

∂xj

= S : ∇v + v · div S.

2.4.2 Integration Theorems

Many derivations in continuum mechanics are dependent upon the ability to relate
the integration of fields over general volumes to the integration over the boundary
of such volumes. For this purpose, consider a volume V with boundary surface ∂V

and let n be the unit normal to this surface as shown in Figure 2.7. All integration
theorems can be derived from a basic equation giving the integral of the gradient
of a scalar field f as

∫
V

∇f dV =
∫

∂V
fn dA. (2.136)

Proof of this equation can be found in any standard text on calculus.

dA

x3

x2x1 V

n

∂V

FIGURE 2.7 General volume and element of area.



2.4 T E N S O R A N A LY S I S 61

Expressions similar to Equation (2.136) can be obtained for any given vector
or tensor field v by simply using Equation (2.136) on each of the components of v

to give∫
V

∇v dV =
∫

∂V
v ⊗ n dA. (2.137)

A more familiar expression is obtained by taking the trace of the above equation to
give the Gauss or divergence theorem for a vector field v as∫

V
div v dV =

∫
∂V

v · n dA. (2.138)

Similarly, taking the trace of Equation (2.137) when v is replaced by a second-order
tensor S and noting that, as a result of Equation (2.72c), (S ⊗ n) : I = Sn, gives

∫
V

div S dV =
∫

∂V
Sn dA. (2.139)

EXAMPLE 2.12: Volume of a three-dimensional body

The volume of a three-dimensional body is evaluated by the integral

V =
∫

V

dV.

Using Equation (2.138) it is possible and often useful to rewrite this volume in terms
of an area integral. For this purpose note first that the divergence of the function
v(x) = x/3 is 1 and therefore Equation (2.138) gives

V =
1
3

∫
∂V

x · n dA.

Exercises

1. The second-order tensor P maps any vector u to its projection on a plane
passing through the origin and with unit normal a. Show that

Pij = δij − aiaj ; P = I − a ⊗ a.

Show that the invariants of P are IP = IIP = 2, IIIP = 0, and find the
eigenvalues and eigenvectors of P .

2. Using a procedure similar to that employed in Equations (2.41) and (2.42),
obtain transformation equations for the components of third- and fourth-order
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tensors in two sets of bases ei and e′
i that are related by the three-dimensional

transformation tensor Q with components Qij = ei · e′
j .

3. If L and l are initial and current lengths, respectively, of an axial rod, the
associated Engineering, Logarithmic, Green and Almansi strains given in Sec-
tion 1.3.1 are

εE(l) =
l − L

L
; εL(l) = ln

l

L
; εG(l) =

l2 − L2

2L2 ;

εA(l) =
l2 − L2

2l2
.

Find the directional derivatives DεE(l)[u], DεL(l)[u], DεG(l)[u] and
DεA(l)[u] where u is a small increment in the length l.

4. Given any second-order tensor S linearize the expression S2 = SS in the
direction of an increment U .

5. Consider a functional I that when applied to the function y(x) gives the integral

I(y(x)) =
∫ b

a
f(x, y, y′) dx,

where f is a general expression involving x, y(x) and the derivative y′(x) =
dy/dx. Show that the function y(x) that renders the above functional stationary
and satisfies the boundary conditions y(a) = ya and y(b) = yb is the solution
of the following Euler–Lagrange differential equation:

d

dx

(
∂f

∂y′

)
− ∂f

∂y
= 0.

6. Prove Equations (2.135a–g) following the procedure shown in Example 2.11.
7. Show that the volume of a closed three-dimensional body V is variously given as

V =
∫

∂V
nx dA =

∫
∂V

ny dA =
∫

∂V
nz dA,

where nx, ny, and nz are the x, y, and z components of the unit normal n.



C H A P T E R T H R E E

ANALYSIS OF
THREE-DIMENSIONAL TRUSS
STRUCTURES

3.1 INTRODUCTION

This chapter considers the uniaxial (one-dimensional) large-displacement, large-
strain, rate-independent elasto-plastic behavior applicable to structural analysis of
pin-jointed trusses. The motivation is to expand and reinforce previous material
and to introduce some topics that will reappear later when elasto-plastic behavior
of continua is considered. For example, various nonlinear geometrical descriptors
will be linearized providing further examples of the use of the directional derivative.

Formulations start with the kinematic description of the motion in three-
dimensional space of a truss member (axial rod) that undergoes large displacements
and rotations leading to large or small strain that causes stress which may reach the
limit or yield stress of the material. For simplicity, it will be assumed that the strain
in the truss member is uniform. Consequently, the fundamental measure of defor-
mation in the axial rod is the stretch λ = l/L, which is the ratio of the deformed
length to the undeformed length, see Figure 3.1.

The internal forces in the truss are easily determined from simple strength-
of-material considerations involving the true (or Cauchy) stress, σ, defined for a
truss as the internal axial force, T , divided by the deformed cross-sectional area,
a. However, for large deformation the elasto-plastic behavior is best characterized
using an alternative stress known as the Kirchhoff stress, τ , defined as σv/V , see
Figure 3.1. In preparation for Chapter 6 it will be shown how the Kirchhoff stress
can be derived from a hyperelastic energy function involving the natural logarithm
of the stretch.

63
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Time = t, Length = l
Sectional area = a
Volume = v

Time = 0, Length = L
Sectional area = A
Volume = V

X3, x3
X2, x2

X1, x1

ub

ua

n
x

u

X

FIGURE 3.1 Three-dimensional axial truss member − kinematics.

Global equilibrium equations are derived from simple joint equilibrium equa-
tions. Since these are nonlinear with respect to the position of the rod, a Newton–
Raphson solution procedure is adopted which requires the linearization of the equi-
librium equations. This is achieved using the directional derivative to yield the
tangent matrix necessary for the solution. The tangent matrix contains the material
tangent modulus which is the derivative of the stress with respect to the strain, which
for elastic behavior will emerge as a Young’s modulus like constant. However, for
inelastic (plastic) cases detailed consideration of elasto-plastic material behavior is
necessary.

Plasticity (behavior at the elastic limit) is dealt with in the context of a simple
one-dimensional yield criterion with hardening and associated flow rule for the
plastic strain rate.

The equilibrium equations require the evaluation of the stress, and insofar as
the stress is either lower or at the current (in the case of hardening) elastic limit,
the stress only depends upon the elastic strain. A strain in excess of that required to
reach the yield stress results, after complete removal of the stress, in a nonrecov-
erable permanent (plastic) strain which remains locked into the material. In such
a situation the elastic strain measures the difference between the total strain and
the plastic strain. However, given a current state of deformation of a truss member,
it is not possible to directly determine the relative proportions of elastic to plastic
strain that comprise the observed total strain. This can only be accomplished by
tracking the development of the plastic strain throughout the history of the defor-
mation. Such a material is called a path-dependent material. Consequently, central
to any numerical algorithm is the need to integrate over time the plastic strain rate
in order to calculate the accumulated plastic strain and thence the elastic strain.
This must be accomplished under the constraint that the stress does not exceed the
current yield stress. It will be shown that this can be conveniently expressed as a
return-mapping algorithm from a guessed or trial stress. Although the calculation
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of the accumulated plastic strain introduces the notion of plastic strain rate, nev-
ertheless material behavior can remain rate-independent in the sense that a given
deformation history will lead to a specific state of stress irrespective of the speed
at which this path is followed. This implies that for rate-independent materials the
time variable used is purely notional. Consideration of the elasto-plastic material
behavior is completed by the formulation of the material tangent modulus required
for the numerical solution.

The resulting discretized equilibrium equations and tangent stiffness matrix are
included in the FLagSHyP program that is used to provide a number of examples
illustrating an interesting range of nonlinear structural behavior.

The subject matter covered in this chapter is considered in greater detail in
Simo and Hughes (2000) in the context of small strains.

3.2 KINEMATICS

The description of the motion of the axial rod, shown in Figure 3.1, is deliberately
set up to provide an introduction to the more general concepts of large deforma-
tion kinematics to be encountered in Chapter 4 and large deformation elasto-plastic
behavior presented in Chapter 7.

Figure 3.1 shows the motion of the rod with respect to Cartesian axes. To cor-
respond to later developments upper case letters are used to describe the initial
undeformed position, X, length L, cross-sectional area A and volume V at time
t = 0. Lower case letters are used to describe the current deformed postion, x,
length l, cross-sectional area a and volume v at time t. Both upper and lower case
axes are labeled in Figure 3.1 because, in principle, it is possible to use different
Cartesian axes to describe the initial and deformed (current) positions; however,
here the assumption is made that they coalesce.

The current (deformed) length of the rod and the unit vector n can be found in
terms of the current end coordinates xa and xb as

l = {(xb − xa) · (xb − xa)}1/2; unit vector n =
1
l
(xb − xa). (3.1a,b)

In the current position the rod may undergo an incremental displacement u which at
the end nodes takes valuesua andub, see Figure 3.1. Note that the end displacements
are not the displacements from the initial position but incremental displacements
that the current position may experience in the progress of its motion.

Under the assumption that the rod undergoes large uniform deformation and
strain, the basic quantity from which a strain measure will be derived is the stretch,
λ, defined as the ratio of the current length, l, to the initial length, L, whilst the
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associated volume ratio, J , is the ratio of the current to the initial volume; these are
given as

λ =
l

L
; J =

v

V
. (3.2a,b)

If the rod elongates by dl from the current length l then the instantaneous engineer-
ing strain is dε = dl/l. Summing all dε as the rod elongates from the initial length
L to current length l provides a definition of the logarithmic strain, ε, as

ε = ln λ =
∫ l

L

dl

l
; dε =

dl

l
. (3.3a,b)

If the deformation normal to the axis of the rod is the same in all directions (which
is the case for transversely isotropic materials) then it is shown in Example 3.1 that
the volume ratio, J , can be related to the stretch in terms of Poisson’s ratio, ν, as

J = λ (1−2ν) or v = V

(
l

L

)1−2ν

. (3.4a,b)

EXAMPLE 3.1: Proof of (3.4 a,b)

volume = υ
x-sec area = a
radius = r
volume = υ + dυ
x-sec area = a + da
radius = r + dr

l

l + dl

Assuming the usual relationship between axial and radial strain given by Poisson’s
ratio ν, the ratio between the initial volume V and current volume v can be determined
as follows:

current volume v = al

current cross-sectional area a = πr2

instantaneous axial strain dε =
dl

l

instantaneous radial strain dεr =
dr

r
= −ν

dl

l
instantaneous volume change dv = adl + lda

where da = 2πrdr = 2a
dr

r
= −2aν

dl

l
hence dv = adl − 2aνdl = (1 − 2ν)adl

(continued)



3.2 K I N E M AT I C S 67

EXAMPLE 3.1: (cont.)

or
dv

v
= (1 − 2ν)

dl

l

assuming Poisson’s ratio is constant during deformation

integration yields
∫ v

V

dv

v
= (1 − 2ν)

∫ l

L

dl

l

ln
v

V
= (1 − 2ν) ln

l

L

or J =
v

V
=
(

l

L

)(1−2ν)

= λ(1−2ν)

3.2.1 Linearization of Geometrical Descriptors

In order to develop the tangent stiffness matrix required for the Newton–Raphson
solution of the nonlinear equilibrium equations, it is necessary to linearize kinematic
quantities. This will be accomplished using the directional derivative discussed in
Chapters 1 and 2, determined with respect to the incremental end displacements
ua and ub.

Employing Equation (3.1a,b) the directional derivative of the current length
vector, ln = (xb − xa), is determined as

D(xb − xa)[u] =
d

dε

∣∣∣∣
ε=0

(xb + εub − xa − εua) = (ub − ua). (3.5)

The directional derivative of the current length, l, is most easily derived by noting
that

Dl2(x)[u] = 2lDl(x)[u]. (3.6)

Consequently,

Dl(x)[u] =
1
2l

Dl2(x)[u]; (3.7)

substituting for l2 from Equation (3.1a,b) gives

Dl2(x)[u] =
d

dε

∣∣∣∣
ε=0

{
(xb + εub −xa − εua) · (xb + εub −xa − εua)

}
= 2(xb −xa) · (ub −ua), (3.8)
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from which

Dl(x)[u] = n · (ub − ua). (3.9)

Similarly, it is useful to note for later derivations that

Dl−1(x)[u] = −l−2Dl(x)[u] = −l−2n · (ub − ua). (3.10)

Recalling the definition of the logarithmic strain in Equation (3.3a,b), ε = ln λ,
enables its directional derivative to be found as

Dε(x)[u] = D(ln l(x) − ln L)[u] =
1
l
Dl(x)[u] =

1
l
n · (ub − ua). (3.11)

3.3 INTERNAL FORCES AND HYPERELASTIC

CONSTITUTIVE EQUATIONS

Internal truss forces, T a and T b, see Figure 3.2, are easily determined in terms of
the true (or Cauchy) stress, the current cross-sectional area, a, and the unit vector
n as

T a = −σan; T b = +σan. (3.12a,b)

Before considering the tangent stiffness matrix which, as seen previously in
Chapter 1, relates changes in equilibriating forces to corresponding changes in
position, it is necessary to develop a constitutive equation suitable for large strain
applications. A constitutive equation, for a specified material, relates stress to a

X3, x3 X2, x2

X1, x1

Ta

Tb

x

FIGURE 3.2 Three-dimensional axial truss member − forces.
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strain measure and is necessary to enable the calculation of the internal force com-
ponents of the equilibriating forces. Consequently, the change in the stress due to
a change in strain is essential for the development of the tangent stiffness.

As a precursor to Chapter 6 concerning hyperelastic constitutive equations, a
start is made by introducing the stored strain energy, Ψ, per unit initial volume
developed as the rod deforms from initial to current position. At any time, t, the
absolute value of the current axial force, T (l), acting on the rod is a function of the
current length l. If the rod elongates by a small amount, dl, then the work done is
simply T (l) dl and the total work done, Ψ, per unit initial volume, V , is

Ψ =
1
V

∫ l

L
T (l) dl =

∫ l

L

σa

V
dl. (3.13)

Since the current volume v = al, and recalling Equation (3.3a,b) for dε the strain
energy Ψ can be rewritten as

Ψ =
∫ l

L
τ(l)dε; τ = Jσ. (3.14)

where τ is called the Kirchhoff stress and J is the volume ratio given in Equation
(3.2a,b) as J = v/V . As discussed above, dε is the instantaneous engineering strain
and insofar as τ times dε gives work done (or strain energy developed) per unit
initial volume, τ and dε are said to be work conjugate to one another with respect
to the initial configuration. In other words, if the increment in strain is dε then τ

must be used to obtain the correct work done. Later in Chapter 5 other important
examples of conjugate stress and strain measures will emerge.

As yet a material parameter relating stress to strain has not been introduced
and, in lieu of anything better at the moment, a Young’s modulus like constant E

is defined as the gradient of a measured τ versus the logarithmic strain ε as

E =
dτ

dε
; dτ = Edε. (3.15)

Assuming for simplicity that this gradient, E, is not dependent upon the strain, then
a relationship from which the Kirchhoff stress, τ can be determined as a function
of the logarithm of the stretch λ = l/L can be found as∫ τ

0
dτ = E

∫ l

L

dl

l
; τ = E ln λ. (3.16)

This, it transpires, is the particular axial rod case of a general logarithmic stretch
based constitutive equation to be discussed in detail in Chapter 6.Again the logarith-
mic strain, ln λ, emerges naturally as the integral of the instantaneous engineering
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strain. Substitution of τ from Equation (3.11c) into Equation (3.10) enables the
strain energy per unit initial volume to be found as

Ψ = E

∫ l

L
ln
(

l

L

)
dl

l
=

1
2
E (ln λ)2 . (3.17)

It is obvious that the Kirchhoff stress τ can also be found as

τ =
dΨ

d (ln λ)
. (3.18)

The strain energy per unit initial volume, Ψ, given by Equation (3.17) is a function
of the initial length L and the current length l and is consequently independent of
the path taken by the rod as it moved from L to l. Such a material is called hyper-
elastic. Equation (3.18) is often used as a definition of a hyperelastic material. If
the rod is incompressible, Poisson’s ratio ν = 0.5 and J = 1 and the constitutive
equation used in Chapter 1, σ = E ln λ, is recovered.

Returning to the internal truss forces T a and T b, substitution of σ = τ/J into
Equation (3.12a,b) gives, after some rearrangement,

T b =
V E

l
ln
(

l

L

)
n; T a = −T b. (3.19)

3.4 NONLINEAR EQUILIBRIUM EQUATIONS AND THE

NEWTON--RAPHSON SOLUTION

3.4.1 Equilibrium Equations

The truss joint (node) equilibrium equations are established with respect to the cur-
rent position by assembling the typical internal forces T a and the external forces
F a at all nodes (a = 1, . . . , N ) in the truss. This assembly is performed in the
standard structural manner by adding contributions from all truss members (ele-
ments) meeting at the typical node a, see Figure 3.3. This is expressed in terms of
the residual or out of balance nodal force Ra as the balance between the internal
and the external forces as

Ra =
ma∑
e=1
e�a

T a
n − F a = 0, (3.20)

where the slightly unusual symbol e � a is used here to denote the elements e that
meet at node a and ma is the total number of such elements. Since the internal
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FIGURE 3.3 Three-dimensional truss − equilibrium.

joint (nodal) force given by Equation (3.19) is a function of the current member
(element) length l and unit vector n, the above equilibrium equations are nonlinear
functions of the node positions. Consequently, the equilibrium equations need to
be solved using the Newton–Raphson procedure given in Chapter 1, Section 1.4.2.
Equation (3.20) can be written in the compact form in terms of the out of balance
residual forces R(x), which are a function of the current nodal positions x giving

R(x) = T(x) − F; x =

⎡⎢⎢⎢⎣
x1

x2
...

xN

⎤⎥⎥⎥⎦ ; T =

⎡⎢⎢⎢⎣
T 1

T 2
...

T N

⎤⎥⎥⎥⎦ ; F =

⎡⎢⎢⎢⎣
F 1

F 2
...

F N

⎤⎥⎥⎥⎦ .

(3.21a,b,c,d)

Observe that in the above equilibrium equation the external forces F are not a func-
tion of the current nodal positions x. Generally this is not the case, for example,
in the simple cantilever example given in Chapter 1, Figure 1.1, the force F could
remain at right angles to the beam in which case the force vector F is a function
of the angle θ. Another example is the inflation of a balloon where the pressure
changes in magnitude and direction as the balloon inflates.

3.4.2 Newton–Raphson Procedure

The Newton–Raphson procedure can be summarized by recalling Equations (1.36)
and (1.37a,b) and Box 1.1 in which a linear set of equations involving the assem-
bled tangent matrix K, the incremental displacements u and the out of balance or
residual forces R are written for an iterative step k as

K(xk)u = −R(xk); xk+1 = xk + u ; K(xk)u = DR(xk)[u]. (3.22a,b,c)
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Box 1.1 which shows the Newton–Raphson algorithm will be revised later in this
chapter to include elasto-plastic considerations.

The tangent matrix K is assembled in the usual finite element manner from
individual element stiffness contributions K(e), where

K(e)(x(e)
k ) =

[
K

(e)
aa K

(e)
ab

K
(e)
ba K

(e)
bb

]
; x(e)

k =
[
xa

xb

]
k

. (3.23a,b)

For the case where external forces are not dependent upon the deformation, the
element stiffness contribution to K(xk)u in Equation (3.22a,b,c) is the directional
derivative of T(e), that is,

K(e)(x(e)
k )u(e) = DT(e)(x(e))[u] ; T(e) =

[
T a

T b

]
; u(e)

k =
[
ua

ub

]
k

.

(3.24a,b,c)

Consequently in the following section attention is focused on the directional deriva-
tive DT(e)(x(e))[u(e)] for a typical element (e).

3.4.3 Tangent Elastic Stiffness Matrix

The directional derivative DT(e)(x(e))[u(e)], which yields the tangent stiffness,
results from the linearization, with respect to the current position x, of the non-
linear function T b = −T a, where a and b are the two nodes comprising element
(e). In addition, this reveals again the tangent modulus, E, as the derivative of the
Kirchhoff stress τ with respect to the logarithmic strain ε. Later, Section 3.5.6 will
re-consider the tangent modulus to account for elasto-plastic behavior.

From Equations (3.12a,b, and 3.14) and Equations (3.3a,b) the internal force
T

(e)
b and the logarithmic strain can be expressed as

T
(e)
b = τ

V

l
n; ε = ln

l

L
. (3.25a,b)

The directional derivative makes use of Equations (3.5, 3.9, 3.10, 3.11) and will
be displayed in detail as an example of the use of the directional derivative. From
Equations (3.25a,b) * above,

* Element superscript (e) omitted for clarity.



3.4 N O N L I N E A R E Q U I L I B R I U M E Q U AT I O N S 73

DT b(x)[u]

= Dτ(x)[u]
V

l
n + τD

(
V

l

)
[u]n + τ

V

l
Dn(x)[u] (3.26a)

=
dτ

dε
Dε(x)[u]

V

l
n + τD

(
V

l

)
[u]n+τ

V

l
Dn(x)[u] (3.26b)

=
dτ

dε

1
l
n · (ub − ua)

V

l
n + τV D

(
l−1) [u]n

+ τ
V

l

(
D
(
l−1) [u](xb − xa) +

1
l
D(xb − xa)[u]

)
(3.26c)

=
dτ

dε

V

l2
n · (ub −ua)n + 2τV D

(
l−1) [u]n +

τV

l2
(ub −ua) (3.26d)

=
dτ

dε

V

l2
n · (ub −ua)n − 2

l2
τV n · (ub −ua)n +

τV

l2
(ub −ua) (3.26e)

=
(

dτ

dε

V

l2
− 2τV

l2

)
n · (ub − ua)n +

τV

l2
(ub − ua) (3.26f)

=
(

V

v

dτ

dε

a

l
− 2σa

l

)
n·(ub − ua)n+

σa

l
(ub − ua) (3.26g)

=
(

V

v

dτ

dε

a

l
− 2σa

l

)
(n ⊗ n)3×3 (ub −ua) +

σa

l
I3×3 (ub −ua). (3.26h)

DTa(x)[u] = −DTb(x)[u]. Rearrangement in matrix form yields

DT(e)(x(e))[u(e)] = K(e)u(e) =

⎡⎣K
(e)
aa K

(e)
ab

K
(e)
ba K

(e)
bb

⎤⎦[ua

ub

]
, (3.27a,b)

where, in terms of a scalar stiffness term k and the axial force T = σa, the
component tangent stiffness matrices are

K(e)
aa = K

(e)
bb = kn ⊗ n +

T

l
I3×3; K

(e)
ab = K

(e)
ba = −K

(e)
bb . (3.28a,b)
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The scalar stiffness term k requires evaluation of the elastic tangent modulus which
from Equations (3.3a,b, 3.15) is simply, dτ/dε = E, hence the scalar stiffness can
be expressed in alternative ways as

k=
(

V

v

dτ

dε

a

l
− 2T

l

)
=
(

V

v

Ea

l
− 2T

l

)
=

V

l2
(E − 2τ) ; T = σa.

(3.29a,b)

3.5 ELASTO-PLASTIC BEHAVIOR

This section extends the previous formulation to include elasto-plastic material
behavior of the axial rod. The kinematics of the rod are re-considered in order to
distinguish between the elastic and permanent plastic deformation.

Although only axial behavior is considered, it may be helpful to recall what
happens when a metal wire is bent. If the bending moment is small then upon
release the wire will return to its original configuration, this is called elastic behav-
ior. If the bending moment is re-applied and continues to increase, a maximum
moment, dependent upon the yield stress of the material, will be reached and fur-
ther deformation can be achieved with little or no increase in the moment. This
further deformation is plastic deformation. If the bending moment is now released
for a second time, the wire will partially elastically return to its original shape but
not completely, that is, it sustains permanent plastic deformation. If upon reaching
the maximum moment a further small increase in moment was required to maintain
the increasing deformation then the material exhibits hardening behavior which
is a gradual increase in the yield stress. In order to reconstitute the original con-
figuration of the wire, it would be necessary to reverse this process by applying
a negative bending moment to produce reverse yielding such that upon removal
of the moment the partial elastic deformation would return the wire to its original
shape. This scenario obviously occurs for purely axial deformation but the various
configurations are less apparent.

A description of the overall elasto-plastic deformation will be followed by a
reasonably detailed discussion of the elasto-plastic material behavior necessary for
the subsequent numerical implementation.

3.5.1 Multiplicative Decomposition of the Stretch

Assume that the force in the axial rod with current stretch λ = l/L is such that
the Kirchhoff stress τ has reached the maximum capable of being sustained by the
material, that is, the yield stress τy. This could imply that the stretch is far greater
than that necessary to initially attain the yield stress. Now consider that the axial
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FIGURE 3.4 Decomposition of the stretch.

rod is completely unloaded, as discussed above, as a result, it will change length but
not fully recover the original length L. In fact, it will partially recover elastically
to an unloaded length lp as the load is removed. This will remain as the permanent
length of the rod unless further loading takes place. Referring to Figure 3.4 the
elastic stretch λe and the plastic stretch λp are defined as

λe =
l

lp
; λp =

lp
L

, (3.30a,b)

from which the multiplicative decomposition of the stretch λ into elastic and plastic
components is

λ = λeλp. (3.31)

The unloaded configuration having length lp can be viewed as a new reference state
from which the rod is elastically stretched by λe to its current configuration x with
length l. This alternative reference state is often referred to as the inelastic or plastic
reference configuration.

By taking the natural logarithm of the stretch given in Equation (3.31) an addi-
tive decomposition of the logarithmic strain into elastic and plastic components is
achieved as

ln λ = ln λe + ln λp. (3.32)

This corresponds to the additive decomposition of strain employed in small strain
elasto-plastic formulations. For convenience the logarithmic strains are notationally
defined as

ε = ln λ; εe = ln λe; εp = ln λp; ε = εe + εp. (3.33a,b,c,d)
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Note that in small strain theory Equation (3.33a,b,c,d)d† is taken as the initial
kinematic assumption.

3.5.2 Rate-independent Plasticity

The elasto-plastic material is most easily introduced by observing the behavior of
the one-dimensional rheological model shown in Figure 3.5a. The Kirchhoff stress
τ , discussed in Section 3.3, is retained as the work conjugate stress to the logarithmic
strain, ε. The model, as illustrated, is not entirely representative of the behavior but is
adequate to serve as an introduction provided the load is monotonically increasing.*

The model has three components, see Figure 3.5b, a hyperelastic spring in
series with a frictional slip device which is in parallel with an additional linear
hardening elastic spring. The hyperelastic spring represents the nonlinear elastic
behavior of Section 3.3. The frictional slip device determines the onset of plastic
behavior insofar as slip is not initiated until the stress reaches the initial yield stress
τ0
y . Thereafter the hardening spring introduces an increase in the yield stress as a

function of post-yielding deformation which is characterized by the amount of slip
in the friction device. The total strain ε is the addition of the elastic recoverable
strain εe (in the hyperelastic spring) and the permanent plastic strain εp (in the slip

τ

τ
H

E

(a)

(b) (c)

H

E

τy
0

τy

τy

0

τ

τy
0

εp

εp εe

ε

εp

εp

εe

ε

τ

τ

τ

FIGURE 3.5 One-dimensional elasto-plastic behavior; (a) Rheological model; (b) Component
stress−strain behavior; (c) Combined stress−strain behavior.

† Typically, Equation (3.33a,b,c,d)d refers to Equation (3.33d).
* For the model to be complete it is necessary to include the caveat that upon any reversal of load the yield stress,

τy , in the frictional slip device must be re-initialized to that developed by hardening prior to the reversal of the
load.
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friction device) as given by the additive decomposition of the logarithmic stretch
in Equation (3.32). The stress increases from zero until the initial yield stress τ0

y is
reached. In the absence of the hardening spring, further increases in strain can only
be accommodated by irreversible sliding of the frictional device at constant stress.
If the hardening spring is present, further increase in stress can be tolerated as the
effective yield stress τy(εp) now becomes a function of the plastic strain εp. Upon
removal of the stress, elastic strain εe is recovered leaving a permanent plastic strain
εp. Observe that the permanent plastic strain is not equal to the additional strain
occurring after the first onset of yielding since this additional strain has an elastic
component. Furthermore, note that the stress can never be higher than the current
yield stress but that it can be lower if unloading occurs. The combined action of
the model shown in Figure 3.5c is the sum of the individual components shown
in Figure 3.5b. To reiterate, the elasto-plastic behavior described is called rate-
independent finite strain plasticity with isotropic hardening. “Rate-independent”
means that the stress is not a function of the strain rate (as it would be in a vis-
coplastic model) and “isotropic hardening” means that the yield stress increases
equally due to tensile or compressive straining.

The stress is governed by the elastic spring as,

τ = Eεe = E(ε − εp). (3.34)

The apparent simplicity of this equation disguises the fact that the plastic strain, εp,
cannot be obtained directly from the current configuration alone. Indeed, as previ-
ously discussed the material behavior is path-dependent and the evaluation of εp can
only be achieved by integrating the plastic strain rate, ε̇p, with respect to time to give

εp =
∫ t

0
ε̇p dt. (3.35)

Remark 3.1: In the present one-dimensional case it was simple to define the
plastic strain, εp, and as shown below its rate, ε̇p. However, in the general
three-dimensional context it is not obvious how physically meaningful plastic
strain measures and corresponding rates can be defined. Nevertheless, such
difficulties can be conveniently circumvented by expressing plastic strain rates
in terms of rates of elastic strain at constant overall deformation. This can be
illustrated for the truss member case as follows. From Equation (3.33a,b,c,d)d
the elastic strain is εe = ε − εp. Differentiating this expression with respect
to time with ε remaining constant gives

dεe

dt

∣∣∣∣
ε=const

= −ε̇p. (3.36)
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This equation can be expressed in terms of the elastic stretch, λe, to yield

ε̇p = − d ln λe

dt

∣∣∣∣
ln λ=const

(3.37a)

= − 1
λe

dλe

dt

∣∣∣∣
λ=const

(3.37b)

=
1
2

dλ2
e

dt

∣∣∣∣
λ=const

λ−2
e ; (3.37c)

this last term is directly analogous to equations used later in Chapter 7, see
Remark 7.3.

For the simple one-dimensional case under consideration, the plastic strain rate can
obviously be expressed as

ε̇p = |ε̇p| sign(τ); sign(τ) =
{

+1 if τ > 0
−1 if τ < 0

. (3.38)

This transpires to be the particular one-dimensional equivalent of the general flow
rule*

ε̇p = γ̇
∂f

∂τ
, (3.39)

where γ̇, a proportionality factor, is called the consistency parameter or plastic
multiplier. The function f(τ, ε̄p), which determines the maximum attainable stress,
is called the yield condition which, for the simple model under consideration, is
given as

f(τ, ε̄p) = |τ | − (τ0
y + Hε̄p) ≤ 0; ε̄p ≥ 0, (3.40)

where ε̄p is the hardening parameter and H is a property of the material called
the plastic modulus, see Figure 3.5b. If f(τ, ε̄p) < 0, the deformation is elastic;
alternatively, if f(τ, ε̄p) = 0, further deformation may be either elastic or plastic
depending upon the subsequent loading.

At its simplest the hardening parameter, ε̄p, is defined as the accumulated
absolute plastic strain occurring over time, that is,

ε̄p =
∫ t

0
˙̄εp dt; ˙̄εp = |ε̇p| . (3.41a,b)

* As discussed in Chapter 7, this is a consequence of the maximum plastic dissipation principle.
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For the one-dimensional case a simple derivation and comparison with Equa-
tion (3.38) shows that

∂f

∂τ
= sign(τ); γ̇ = |ε̇p| = ˙̄εp. (3.42a,b,c)

Remark 3.2: For our particular plasticity model it so happens that γ̇ = |ε̇p| =
˙̄εp. However, this is not always the case for other possible choices of yield
function. Clearly we could progress our development using either |ε̇p| or ˙̄εp in
place of γ̇; nevertheless, the use of γ̇ is preferred in order to align with classi-
cal plasticity theory. It is worth emphasizing that it is precisely γ̇ = |ε̇p| that
is needed for the evaluation of the plastic strain rate given by Equation (3.38).

The term (τ0
y +Hε̄p) in the yield condition given by Equation (3.40) is the effective

yield stress dependent upon the accumulated plastic strain ε̄p. As explained above,
plastic straining, that is, ε̇p �= 0, will only occur when the stress equals the yield
stress, that is, f(τ, ε̄p) = 0. If f(τ, ε̄p) < 0 then the response is elastic and both
γ̇ and ε̇p are zero. These statements can be combined into the loading/unloading
conditions* as

γ̇ ≥ 0; f(τ, ε̄p) ≤ 0; γ̇f(τ, ε̄p) = 0. (3.43a,b,c)

The first two of the above equations are self evident whilst the last implies that
if γ̇ > 0 then f(τ, ε̄p) = 0 and if f(τ, ε̄p) < 0 then γ̇ = 0. Put simply, the
loading/unloading conditions determine whether the stress is “at or less than” the
current effective yield stress or, alternatively, whether the behavior is plastic or
elastic. If the stress is such that f(τ, ε̄p) = 0 then ε̇p �= 0 and must be such that
f(τ, ε̄) remains equal to zero, that is, d

dtf(τ, ε̄p) = 0; in other words, the stress must
remain at the yield stress value taking into account any increase due to hardening.
This requirement is known as the consistency condition,† expressed as

γ̇ḟ(τ, ε̄p) = 0. (3.44)

Expanding ḟ(τ, ε̄p) with the help of Equations (3.41a,b, 3.42a,b,c) gives

ḟ(τ, ε̄p) =
∂f

∂τ
τ̇ +

∂f

∂ε̄p
γ̇ = 0; if f(τ, ε̄p) = 0. (3.45)

* Alternatively often called the Kuhn-Tucker conditions in recognition of affinities with mathematical program-
ming.

† A more descriptive, but less used, term is persistency condition in which case γ̇ would be called the persistency
parameter.
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With the help of this equation it is now possible to evaluate γ̇ and hence, from
Equations (3.38, 3.42a,b,c) ε̇p, enabling the determination of the plastic strain εp

from Equation (3.35). Using the yield condition given by Equation (3.40), the
derivatives of the yield function in Equation (3.45) are found as

∂f

∂τ
= sign(τ);

∂f

∂ε̄p
= −H. (3.46a,b)

Substituting these expressions into Equation (3.45) and using the time derivative of
Equation (3.34) as τ̇ = E(ε̇− ε̇p) gives after some simple manipulation the plastic
multiplier γ̇ as

γ̇ =
(

E

E + H

)
sign(τ) ε̇; if f(τ, ε̄p) = 0. (3.47)

This enables the plastic strain rate of Equation (3.38) to be found as

ε̇p =
(

E

E + H

)
ε̇; if f(τ, ε̄p) = 0. (3.48)

The above rate could now be integrated in time according to Equation (3.35) to
provide the plastic strain εp and thus enable the Kirchhoff stress, τ , to be obtained
from Equation (3.34) as τ = E(ε − εp).

Unfortunately in a computational setting the time integration implied in Equa-
tion (3.35) can only be performed approximately from a finite sequence of values
determined at different time steps. The inaccuracies in this process will lead to a
stress that may not satisfy the yield condition. This can be resolved by taking into
account the incremental nature of the computational process to derive an algorithm
that ensures consistency with the yield condition at each incremental time step. Such
a procedure is known as a return mapping algorithm, which will be considered in
the following sections.

3.5.3 Incremental Kinematics

An incremental framework suitable for elasto-plastic computation is established by
considering discrete time steps Δt during which the rod moves from position n at
time t to position n + 1 at time t + Δt. The lengths of the rod at times t and t + Δt

are ln and ln+1 respectively, see Figure 3.6.
At each incremental step an unloaded configuration of the rod can be defined

where the length of the rod is lp,n and lp,n+1 respectively. Of course, if no plastic
straining takes place during the increment then lp,n+1 = lp,n.
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time = t

time = t + Δt

X1, x1

X3, x3 X2, x2

λ p,n
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λΔ p

lp,n

λ n

L

ln

λ n +1

ln +1

λ e,n +1

λp,n +1

λ e,n +1

lp,n +1
trial

FIGURE 3.6 Incremental kinematics.

In the following development it is assumed that the deformation is strain driven;
that is, forces are acting that produce a known stretch λn+1 at time t + Δt. The
problem is then to determine if this stretch results in the rod developing an incre-
ment in plastic strain and, if so, what is the stress such that the yield condition
given by Equation (3.40) is satisfied. It then remains to be determined if this stress,
together with all other stresses in rods making up the truss, is in equilibrium with the
current applied forces. For a given load the Newton–Raphson iteration adjusts the
deformation pattern so that the constitutive equations and equilibrium are satisfied.

Assuming, as a trial in view of no better information, that the deformation over
time step Δt is purely elastic, the stretch λn+1 can be expressed as a multiplicative
decomposition involving any already existing permanent length lp,n and a so-called
trial elastic stretch λtrial

e,n+1, see Figure 3.6, as

λn+1 = λtrial
e,n+1 λp,n. (3.49)

Note that if no plastic strain has occurred then λp,n = 1. Insofar as plastic defor-
mation is incompressible the volume ratio J , given by Equation (3.4a,b), is always
calculated using the elastic component of the stretch as

J =
(
λtrial

e,n+1

)(1−2ν)
. (3.50)

From Equation (3.49) the trial elastic stretch is

λtrial
e,n+1 = λn+1 λ−1

p,n =
ln+1

lp,n
, (3.51)

enabling an additive decomposition of the trial elastic logarithmic strain to be
established as
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εtrial
e,n+1 = εn+1 − εp,n; εn+1 = ln

ln+1

L
; εp,n = ln

lp,n

L
. (3.52a,b,c)

A trial state of stress τ trial
n+1 will be calculated in Section 3.5.5 using the above trial

elastic strain. If this trial stress satisfies the yield condition, that is, f(τ trial
n+1 , ε̄p,n) ≤

0, given in Equation (3.40), no further plastic strain will occur during the increment.
However, should this not be the case, that is, f(τ trial

n+1 , ε̄p,n) > 0, then plastic strain
will take place during increment n to n+1 and a different unloaded length lp,n+1 will
emerge, see Figure 3.6. Comparing unloaded lengths at steps n and n + 1 enables
an incremental plastic stretch, λΔp, and its corresponding logarithmic strain, Δεp,
to be defined as

λΔp =
lp,n+1

lp,n
; Δεp = ln λΔp = ln lp,n+1 − ln lp,n. (3.53a,b)

The incremental plastic stretch permits an alternative description of the trial elastic
stretch as

λtrial
e,n+1 = λe,n+1λΔp; λe,n+1 =

ln+1

lp,n+1
. (3.54a,b)

Consequently, an alternative additive decomposition of the trial elastic strain to be
expressed in terms of an increment of permanent strain Δεp as

εtrial
e,n+1 = εe,n+1 + Δεp; εe,n+1 = ln

ln+1

lp,n+1
. (3.55a,b)

Taking logarithms in the above equation provides a useful alternative equation for
the incremental plastic strain as

Δεp = ln
λtrial

e,n+1

λe,n+1
(3.56a)

= −
(
ln λe,n+1 − ln λtrial

e,n+1

)
(3.56b)

= −
(
εe,n+1 − εtrial

e,n+1

)
. (3.56c)

Observe that whereas Δεp = ln λΔp is a direct measure of the incremental plas-
tic strain, the alternative expression for Δεp given by Equations (3.56)b,c is an
indirect evaluation which is more suited to the development of the continuum for-
mulation of elasto-plastic behavior given in Chapter 7. The equivalence between
the two approaches can be clearly see in Figure 3.6. Furthermore note that Equa-
tions (3.56)b,c are the incremental equivalent of Equation (3.53a,b)b.
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How the increment of permanent strain Δεp is determined depends upon the
flow rule given in Equation (3.38) used in conjunction with the time integration
scheme which follows.

3.5.4 Time Integration

If plastic strain occurs then the increment of permanent plastic strain, Δεp, is
obtained by integrating in time the rate of plastic strain ε̇p over the step as*

Δεp =
∫ tn+1

tn

ε̇p dt; εn+1 = εp,n + Δεp. (3.57a,b)

Within the framework of an incremental formulation it is reasonable to approx-
imate the above integral using what is known as the backward Euler rule, whereby
the integrand, ε̇p, is sampled only at the end of the time step. This together with
the flow rule of Equation (3.38) enables the increment of permanent plastic strain
to be calculated as

Δεp 
 ε̇p,n+1Δt (3.58a)

= γ̇n+1 sign(τn+1)Δt (3.58b)

= Δγ sign(τn+1); Δγ = γ̇n+1Δt, (3.58c)

where Δγ is called the incremental plastic multiplier. Note that sampling ε̇p at the
end of the increment is the simplest way to ensure that at the end of the increment
both the flow rule and the yield criterion are satisfied. In a similar manner, the
increment in the hardening parameter between steps n and n + 1 is

ε̄p,n+1 = ε̄p,n + Δγ; (Δγ = γ̇n+1Δt = ˙̄εp,n+1Δt). (3.59a,b)

With the basic incremental kinematic description and integration scheme in
place, consideration is now focused on the determination of the stress.

3.5.5 Stress Update and Return Mapping

The stress in the rod at position n + 1 is given by Equation (3.34) as

τn+1 = E (εn+1 − εp,n+1) . (3.60)

* Observe that if ε̇p = d
dt

(
ln lp

L

)
= l̇p

lp
is substituted into Equation (3.57a,b), the previous definition of Δεp

given in Equation (3.55a,b) is recovered.
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This can be rewritten using Equations (3.52a,b,c, 3.57a,b) to involve the trial elastic
stress τ trial

n+1 in the following manner:

τn+1 = τ trial
n+1 − EΔεp; τ trial

n+1 = E εtrial
e,n+1. (3.61a,b)

In the presence of additional permanent deformation occurring during time
step Δt, the term (−EΔεp) can be regarded as a correction to the trial stress τ trial

n+1 .
Whether the correction applies depends upon the loading/unloading condition given
by Equation (3.43a,b,c). If the additional permanent deformation has occurred then
Δεp will be determined by the incremental form of the flow rule given by Equa-
tion (3.58) which requires the evaluation of the plastic multiplier increment Δγ.

Whether or not plastic deformation occurs is determined by substituting the
trial elastic stress into the yield criterion given in Equation (3.40) to give

f
(
τ trial
n+1 , ε̄p,n

)
=
∣∣∣τ trial

n+1

∣∣∣− (τ0
y + Hε̄p,n), (3.62)

where, because of the assumption of no plastic deformation, ε̄p,n is the hardening
parameter at position n at time t.

Elastic or elasto-plastic behavior can now be assessed by invoking the load-
ing/unloading condition given by equation (3.43a,b,c) as follows:

Elastic : f
(
τ trial
n+1 , ε̄p,n

)
≤ 0 =⇒

⎧⎪⎪⎨⎪⎪⎩
τn+1 = τ trial

n+1

εp,n+1 = εp,n

ε̄p,n+1 = ε̄p,n

(3.63)

Plastic : f
(
τ trial
n+1 , ε̄p,n

)
> 0 =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δγ > 0

Δεp = Δγ sign(τn+1)

εp,n+1 = εp,n + Δεp

ε̄p,n+1 = ε̄p,n + Δγ

τn+1 = τ trial
n+1 − EΔεp

. (3.64)

In the event of plastic behavior the various updates implied in Equation (3.64) and
collectively called the return mapping algorithm depend upon the determination
of the incremental plastic multiplier Δγ and sign(τn+1), see Equation (3.58), such
that the yield criterion f(τn+1, ε̄pn+1) = 0.
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The incremental plastic multiplier is found following the procedure adopted
by Simo and Hughes (2000) with the Kirchhoff stress τ substituted for the Cauchy
stress σ. From Equations (3.58) and (3.61a,b)

τn+1 = τ trial
n+1 − EΔγ sign(τn+1). (3.65)

Rewriting the above equation to reveal the “sign” operator and gathering terms
gives,

(|τn+1| + EΔγ) sign(τn+1) =
∣∣∣τ trial

n+1

∣∣∣ sign
(
τ trial
n+1

)
. (3.66)

Enforcing f(τn+1, ε̄p,n+1) = 0, implies Δγ > 0, hence the terms multiplying the
“signs” are both positive; consequently,

sign(τn+1) = sign
(
τ trial
n+1

)
and |τn+1| =

∣∣∣τ trial
n+1

∣∣∣− EΔγ. (3.67a,b)

Recall that the sign(τn+1) is needed in Equation (3.58) for the evaluation of the
plastic strain occurring during the increment. The above equation enables the deter-
mination of sign(τn+1) even before consideration of plasticity during the time step.

The yield criterion at position n+1 is now written using the hardening param-
eter update Δε̄p = Δγ from Equation (3.59a,b) and noting the trial yield criterion
from Equation (3.62) to give

f(τn+1, ε̄p,n+1) = |τn+1| − (τ0
y + Hε̄p,n+1) (3.68a)

=
∣∣∣τ trial

n+1

∣∣∣− EΔγ − (τ0
y + Hε̄p,n) − HΔγ (3.68b)

=
∣∣∣τ trial

n+1

∣∣∣− (τ0
y + Hε̄p,n) − (E + H)Δγ (3.68c)

= f trial
n+1 − (E + H)Δγ. (3.68d)

Since f(τn+1, ε̄p,n+1) = 0, the incremental plastic multiplier can be found as

Δγ =
f trial

n+1

(E + H)
. (3.69)

It is now possible to accomplish the various updates given in equation (3.64) which
are frequently collected under the title of the return-mapping algorithm summarized
in Box 3.1. Observe that the incremental plastic multiplier is, somewhat surpris-
ingly, only a function of the trial elastic stress and the hardening parameter at
position n. The return-mapping algorithm is illustrated in Figure 3.7.
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BOX 3.1: Return-mapping Algorithm

If f
(
τ trial
n+1 , ε̄p,n

)
≤ 0

Δγ = 0

Else

Δγ =
f trial

n+1

(E + H)

Endif

Δεp = Δγ sign(τ trial
n+1 )

τn+1 = τ trial
n+1 − EΔεp

εp,n+1 = εp,n + Δεp

ε̄p,n+1 = ε̄p,n + Δγ

EΔεp

εp,n

εn

τ n +1

τn +1

εp,n +1

εn +1

τn

trial

τ

E ε

FIGURE 3.7 Return mapping.

3.5.6 Algorithmic Tangent Modulus

As discussed in Section 3.4, the Newton–Raphson solution procedure required to
solve the nonlinear equilibrium equations involves the calculation of the tangent
stiffness matrix which contains, see Equation (3.26), the tangent modulus term
dτ/dε. This gradient term could be derived from a continuation of Section 3.5.2,
see for example, Simo and Hughes (2000). However, as previously explained, the
tangent modulus derived from incremental considerations is generally not the same
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as that obtained from the rate equations. The reason is that, generally, the incremen-
tal change in stress imposed by the chosen return-mapping algorithm is different
from the continuous change in stress implied by the rate equations. Unfortunately,
due to the very simple nature of one-dimensional plasticity, this difference is not
apparent in the present situation. Nevertheless, in preparation for the later three-
dimensional formulations given in Chapter 7 the so-called algorithmic tangent
modulus will be derived.

From the return-mapping algorithm given in Box 3.1 the stress update is given as

τn+1 = τ trial
n+1 − EΔγ sign(τ trial

n+1 ), (3.70)

where from Equation (3.60) the stress is τn+1 = E (εn+1 − εp,n+1) and from
Equation (3.62) the incremental plastic multiplier is Δγ = f trial

n+1/(E + H). Con-
sequently, since f trial

n+1 is a function of τn+1, both terms are functions of the strain
εn+1. Differentiating τn+1 with respect to the strain εn+1 gives

d τn+1

d εn+1
=

d τ trial
n+1

d εn+1
− E

dΔγ

d εn+1
sign(τ trial

n+1 ) − EΔγ
d sign(τ trial

n+1 )
d εn+1

(3.71a)

= E −
E sign(τ trial

n+1 )
E + H

df trial
n+1

dεn+1
− EΔγ

d sign(τ trial
n+1 )

d εn+1
(3.71b)

= E −
E sign(τ trial

n+1 )
E + H

d
∣∣τ trial

n+1

∣∣
dεn+1

− EΔγ
d sign(τ trial

n+1 )
d εn+1

(3.71c)

= E −
E sign(τ trial

n+1 )
E + H

d
∣∣τ trial

n+1

∣∣
dτ trial

n+1

τ trial
n+1

dεn+1
− EΔγ

d sign(τ trial
n+1 )

d εn+1
(3.71d)

= E −
E2
(
sign(τ trial

n+1 )
)2

E + H
− EΔγ

d sign(τ trial
n+1 )

d εn+1
. (3.71e)

An examination of the sign(τ) function given in Equation (3.38) reveals that

[
sign(τ trial

n+1 )
]2

= 1 and
d sign(τ trial

n+1 )
d τ trial

n+1
= 0;

(
τ trial
n+1 �= 0

)
(3.72a,b)

and therefore the last differential in Equation (3.71) vanishes since

d sign(τ trial
n+1 )

d εn+1
=

d sign(τ trial
n+1 )

d τ trial
n+1

d τ trial
n+1

d εn+1
= 0. (3.73)
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Consequently, the algorithmic tangent modulus emerges as

d τn+1

d εn+1
=

EH

E + H
. (3.74)

When plasticity occurs, this replaces the elastic tangent modulus, dτ/dε = E, used
in Section 3.4.3.

3.5.7 Revised Newton–Raphson Procedure

Satisfaction of either the elastic or plastic constitutive equations for each axial rod
in a loaded truss does not guarantee that the global equilibrium condition given by
Equation (3.21a,b,c,d) is satisfied. Consequently, for given external nodal forces
the nodal positions of the truss need to be adjusted so that both the constitutive
equations and the global equilibrium equations are simultaneously satisfied. This is
precisely what was achieved in the simple single truss member example discussed in
Chapter 1 for which a Newton–Raphson algorithm and a simple computer program
was presented in Boxes 1.1 and 1.2 respectively. This Newton–Raphson algorithm
is now revised to include elasto-plastic considerations as shown in Box 3.2.

BOX 3.2: Elasto-plastic Newton–Raphson Algorithm

• INPUT geometry, material properties, and solution parameters
• INITIALIZE F = 0, x = X (initial geometry), R = 0
• FIND initial K (typically assembled from (3.28a,b))
• LOOP over load increments

• FIND ΔF (establish the load increment)
• SET F = F + ΔF
• SET R = R − ΔF
• DO WHILE (‖R‖/‖F‖ > tolerance)

• SOLVE Ku = −R (typically (3.22a,b,c))
• UPDATE x = x + u (typically (3.22a,b,c))

· LOADING/UNLOADING given in Box 3.1
· UPDATE (if necessary)

plastic strain & hardening parameter
· FIND ELEMENT stress and tangent modulus

• FIND T and K
(typically assembled from (3.20) and (3.28a,b))

• FIND R = T − F (typically (3.21a,b,c,d))

• ENDDO
• ENDLOOP
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3.6 EXAMPLES

Two examples illustrate the geometric and material nonlinear structural behavior
that can be analyzed using the above formulations. The first is a single inclined
axial rod which shows both elastic and elasto-plastic deformation clearly demon-
strating the kinematic discussions of Section 3.5.1. The second example is a two-
dimensional trussed frame exhibiting, in the elastic case, highly nonlinear load
deflection behavior, and in the elasto-plastic case the clear emergence of plastic
hinges associated with the collapse analysis of frames. In both examples the com-
plete force displacement curve (also known as the equilibrium path) requires the
algorithm given in Box 3.1 to be augmented by the arc length technique which is
considered fully in Chapter 9. Although both examples are two-dimensional the
FLagSHyP program can analyze three-dimensional truss structures.

3.6.1 Inclined Axial Rod

The inclined axial rod shown in Figure 3.8a is loaded with a downward vertical force
F, and whilst theYoung’s modulus is realistic, E = 210 kN/mm2, the yield stress is
set artificially high at 25 kN/mm2 to permit some degree of geometric nonlinearity
to occur prior to the onset of plasticity. The equilibrium path contains positions
of stable and unstable equilibrium, the latter for the elastic case being between the
limit points. The final deformation is about twice the initial height of the rod causing
the rod to initially undergo compression followed by the development of tension
after a vertical deformation of 200 mm. Figure 3.8b shows the resulting elastic and
elasto-plastic force deflection curves whilst Figures 3.8c,d refer to the elasto-plastic
analysis and show the development of the stress and the plastic strain respectively.
Observe that during elastic deformation a − b and c − d the corresponding plastic
strain is unchanged; however, when the stress is maintained at the effective yield
stress ′b − c and d − e the plastic strain changes.

3.6.2 Trussed Frame

This example, see Figure 3.9, shows a small strain (except in the region of severe
plastic deformation) large deflection of a trussed frame. The frame is loaded
with a nominal downward vertical force of 100 N at node 144 having coordi-
nates (24.0, 120.0, 0.0), see Figure 3.9a. The elastic equilibrium path shown in
Figure 3.9b is an example of snap-back behavior where both load and deflection
reduce to maintain an equilibrium configuration. Figure 3.9b clearly reveals the
reduction in maximum load caused by the inclusion of plasticity. Figures 3.9c, d
show various elastic and elasto-plastic equilibrium configurations.
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FIGURE 3.8 Large deflection elastio-plastic behavior of a single-axial rod: (a) Geometry;
(b) Elastic and elasto-plastic force deflection behavior; (c) Kirchhoff stress versus strain;
(d) Plastic strain versus strain.

Exercises

These structures can be analyzed using the truss facility in the program
FLagSHyP which can be downloaded from www.flagshyp.com. The user
instructions are given in Chapter 10. The arc length method described in Sec-
tion 9.6.3 is used to enable the equilibrium path (load-deflection path) to be
traced through limit points. Equilibrium paths can be rather convoluted and
some experimentation is required with the arc length value in order to trace a
continuous equilibrium path rather than a connected collection of points that
are in equilibrium; a fixed arc length is often better. Do not be alarmed if solver
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CONTROL DATA:
Elasto-plastic case
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144 0.0 −100.0 0.0

500 25000.0 0.1 100 1.0E−6 0.0 −10.0 5 5 144 2

FIGURE 3.9 Large deflection elastic behavior of a truss frame: (a) Geometry; (b) Force F ver-
tical deflection (under force) behavior; (c) Elastic deformed shape at [u2,F]; (d) Elasto-plastic
deformed shape at [32,222].

warnings appear, these usually mean that equilibrium is being traced along an
unstable path; that is, the structure is in a position of unstable equilibrium.
Unlike linear analysis, nonlinear analysis can yield intuitively unpredictable
results; all that is required of the analysis is that the shape is such that the
stresses are in equilibrium with the load. As seen in the examples, the shape
may well not be unique, for instance in buckling situations. It is advisable to
plot the shape of the truss at various points on the equilibrium path. Dimensions
are in millimeters and Newtons.
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Area = A

F

t = 1

d

FIGURE 3.10 Exercise 3.2 − Arch.

FIGURE 3.11 Exercise 3.3 − Shallow dome.

1. Run the simple single degree of freedom example given in Section 3.6.1, Fig-
ure 3.8. A high value of the yield stress will ensure that the truss remains
elastic.

2. Analyze the arch shown in Figure 3.10. The radius is 100, height 40 and the
half span 80. The cross-sectional area is 1 × 1. Young’s modulus is 107 and
Poisson’s ratio is ν = 0.3. The figure shows how the arch can be represented
as a truss where, by ignoring the cross members, the second moment of area of
the arch, I = 1/12, can be approximated by the top and bottom truss members,
where I = 2(A(t/2)2). Plot the central load vertical deflection curve. Slight
imperfections in the symmetry of the geometry may cause unsymmetric defor-
mations, otherwise these can be initiated by a very small horizontal load being
placed with the vertical load.



3.6 E X A M P L E S 93

3. Analyze the shallow trussed dome shown in Figure 3.11. The outer radius is
50, and height 0, the inner radius is 25 and height 6.216 and the apex height
is 8.216. The cross-sectional area of each truss member is unity. The figure is
approximate in that the apparent major triangles spanning the outer circle do
not have straight sides as shown. Young’s modulus is 8 × 107 and Poisson’s
ratio is 0.5 indicating incompressible behavior. Plot the vertical downward
load deflection behavior at the apex. This is a good example of snap through
behavior. The equilibrium path is very convoluted but upon examination the
corresponding dome shapes are perfectly reasonable.

4. Run the trussed frame example given in Figure 3.9, initially as shown and then
with clamped supports. The cross-sectional area is 6, giving a truss member
area of 1.



C H A P T E R F O U R

KINEMATICS

4.1 INTRODUCTION

It is almost a tautology to say that a proper description of motion is fundamental
to finite deformation analysis, but such an emphasis is necessary because infinites-
imal deformation analysis implies a host of assumptions that we take for granted
and seldom articulate. For example, we have seen in Chapter 1, in the simple truss
example, that care needs to be exercised when large deformations are anticipated
and that a linear definition of strain is totally inadequate in the context of a finite
rotation. A study of finite deformation will require that cherished assumptions be
abandoned and a fresh start made with an open (but not empty!) mind.

Kinematics is the study of motion and deformation without reference to the
cause. We shall see immediately that consideration of finite deformation enables
alternative coordinate systems to be employed, namely, material and spatial descrip-
tions associated with the names of Lagrange and Euler respectively.

Although we are not directly concerned with inertial effects, nevertheless time
derivatives of various kinematic quantities enrich our understanding and also pro-
vide the basis for the formulation of the virtual work expression of equilibrium,
which uses the notion of virtual velocity and associated kinematic quantities.

Wherever appropriate, nonlinear kinematic quantities are linearized in prepa-
ration for inclusion in the linearized equilibrium equations that form the basis of
the Newton–Raphson solution to the finite element equilibrium equations.

4.2 THE MOTION

Figure 4.1 shows the general motion of a deformable body. The body is imagined
as being an assemblage of material particles that are labeled by the coordinates X,

94
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FIGURE 4.1 General motion of a deformable body.

with respect to Cartesian basis EI , at their initial positions at time t = 0. Generally,
the current positions of these particles are located, at time = t, by the coordinates x

with respect to an alternative Cartesian basis ei. In the remainder of this chapter the
bases EI and ei will be taken to be coincident. However, the notational distinction
between EI and ei will be retained in order to identify the association of quantities
with initial or current configurations. The motion can be mathematically described
by a mapping φ between initial and current particle positions as

x = φ(X, t). (4.1)

For a fixed value of t the above equations represent a mapping between the unde-
formed and deformed bodies. Additionally, for a fixed particle X, Equation (4.1)
describes the motion or trajectory of this particle as a function of time. In finite
deformation analysis no assumptions are made regarding the magnitude of the dis-
placement x−X, indeed the displacement may well be of the order or even exceed
the initial dimensions of the body as is the case, for example, in metal forming. In
infinitesimal deformation analysis the displacement x−X is assumed to be small in
comparison with the dimensions of the body, and geometrical changes are ignored.

4.3 MATERIAL AND SPATIAL DESCRIPTIONS

In finite deformation analysis a careful distinction has to be made between the
coordinate systems that can be chosen to describe the behavior of the body whose
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motion is under consideration. Roughly speaking, relevant quantities, such as den-
sity, can be described in terms of where the body was before deformation or where
it is during deformation; the former is called a material description, and the latter is
called a spatial description. Alternatively, these are often referred to as Lagrangian
and Eulerian descriptions respectively. A material description refers to the behav-
ior of a material particle, whereas a spatial description refers to the behavior at a
spatial position. Nevertheless, irrespective of the description eventually employed,
the governing equations must obviously refer to where the body is and hence must
primarily be formulated using a spatial description.

Fluid mechanicians almost exclusively work in terms of a spatial description
because it is not appropriate to describe the behavior of a material particle in, for
example, a steady-state flow situation. Solid mechanicians, on the other hand, will
generally at some stage of a formulation have to consider the constitutive behav-
ior of the material particle, which will involve a material description. In many
instances – for example, polymer flow – where the behavior of the flowing material
may be time-dependent, these distinctions are less obvious.

In order to understand the difference between a material and spatial description,
consider a simple scalar quantity such as the current density, ρ, of the material:

(a) Material description: the variation of ρ over the body is described with respect
to the original (or initial) coordinate X used to label a material particle in the
continuum at time t = 0 as

ρ = ρ(X, t). (4.2a)

(b) Spatial description: ρ is described with respect to the position in space, x,
currently occupied by a material particle in the continuum at time t as

ρ = ρ(x, t). (4.2b)

In Equation (4.2a) a change in time t implies that the same material particle X

has a different density ρ. Consequently, interest is focused on the material par-
ticle X. In Equation (4.2b), however, a change in the time t implies that a differ-
ent density is observed at the same spatial position x, now probably occupied
by a different particle. Consequently, interest is focused on a spatial position x.

EXAMPLE 4.1: Uniaxial motion

This example illustrates the difference between a material and a spatial description of
motion. Consider the mapping x = (1 + t)X defining the motion of a rod of initial
length two units. The rod experiences a temperature distribution given by the material
descriptionT = Xt2 or by the spatial descriptionT = xt2/(1+t), see diagram below.

(continued)
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EXAMPLE 4.1: (cont.)

0 1 2 3 4 5 6

X, x

t

1

2

3

7 8

(X = 1,T = 9)

(X = 1,T = 4)

(X = 1,T = 1) (X = 2,T = 2)

(X = 2,T = 8)

(X = 2,T = 18)

The diagram makes it clear that the particle material coordinates (label) X remains
associated with the particle while its spatial position x changes. The temperature at a
given time can be found in two ways, for example, at time t = 3 the temperature of the
particle labeled X = 2 is T = 2× 32 = 18. Alternatively, the temperature of the same
particle which at t = 3 is at the spatial position x= 8 is T = 8 × 32/(1 + 3) = 18.
Note that whatever the time it makes no sense to enquire about particles for which
X > 2, nor, for example, at time t = 3 does it make sense to enquire about the tem-
perature at x > 8.

Often it is necessary to transform between the material and spatial descriptions
for relevant quantities. For instance, given a scalar quantity, such as the density,
a material description can be easily obtained from a spatial description by using
motion Equation (4.1) as

ρ(X, t) = ρ(φ(X, t), t). (4.2c)

Certain magnitudes, irrespective of whether they are materially or spa-
tially described, are naturally associated with the current or initial configurations
of the body. For instance, the initial density of the body is a material magni-
tude, whereas the current density is intrinsically a spatial quantity. Neverthe-
less, Equations (4.2a–c) clearly show that spatial quantities can, if desired, be
expressed in terms of the initial coordinates.

4.4 DEFORMATION GRADIENT

A key quantity in finite deformation analysis is the deformation gradient F , which
is involved in all equations relating quantities before deformation to corresponding
quantities after (or during) deformation. The deformation gradient tensor enables
the relative spatial position of two neighboring particles after deformation to be
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FIGURE 4.2 General motion in the neighborhood of a particle.

described in terms of their relative material position before deformation; conse-
quently, it is central to the description of deformation and hence strain.

Consider two material particles Q1 and Q2 in the neighborhood of a material
particle P (Figure 4.2). The positions of Q1 and Q2 relative to P are given by the
elemental vectors dX1 and dX2 as

dX1 = XQ1 − XP ; dX2 = XQ2 − XP . (4.3a,b)

After deformation, the material particles P , Q1, and Q2 have deformed to current
spatial positions given by the mapping (4.1) as

xp = φ(XP , t); xq1 = φ(XQ1 , t); xq2 = φ(XQ2 , t); (4.4a,b,c)

and the corresponding elemental vectors become

dx1 = xq1 − xp = φ(XP + dX1, t) − φ(XP , t); (4.5a)

dx2 = xq2 − xp = φ(XP + dX2, t) − φ(XP , t). (4.5b)

Defining the deformation gradient tensor F as

F =
∂φ

∂X
= ∇0φ, (4.6)

where ∇0 denotes the gradient with respect to the material configuration. The
elemental vectors dx1 and dx2 can be obtained in terms of dX1 and dX2 as

dx1 = FdX1; dx2 = FdX2. (4.7a,b)
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Note that F transforms vectors in the initial or reference configuration into vectors
in the current configuration and is therefore said to be a two-point tensor.

Remark 4.1: In many textbooks the motion is expressed as

x = x(X, t), (4.8)

which allows the deformation gradient tensor to be written, perhaps, in a
clearer manner as

F =
∂x

∂X
. (4.9a)

In indicial notation the deformation gradient tensor is expressed as

F =
3∑

i,I=1

FiIei ⊗ EI ; FiI =
∂xi

∂XI
; i, I = 1, 2, 3, (4.9b)

where lowercase indices refer to current (spatial) Cartesian coordinates,
whereas uppercase indices refer to initial (material) Cartesian coordinates.

Confining attention to a single elemental material vector dX, the corre-
sponding vector dx in the spatial configuration is conveniently written as

dx = FdX. (4.10)

The inverse of F is

F −1 =
∂X

∂x
= ∇φ−1, (4.11a)

which in indicial notation is

F −1 =
3∑

I,i=1

∂XI

∂xi
EI ⊗ ei. (4.11b)

Remark 4.2: Much research literature expresses the relationship between
quantities in the material and spatial configurations in terms of the general con-
cepts of push forward and pull back. For example, the elemental spatial vector
dx can be considered as the push forward equivalent of the material vector
dX. This can be expressed in terms of the operation

dx = φ∗[dX] = FdX. (4.12)
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Inversely, the material vector dX is the pull back equivalent of the spatial
vector dx, which is expressed as*

dX = φ−1
∗ [dx] = F −1dx. (4.13)

Observe that in (4.12) the nomenclature φ∗[ ] implies an operation that will
be evaluated in different ways for different operands [ ].

EXAMPLE 4.2: Uniform deformation

This example illustrates the role of the deformation gradient tensor F . Consider the
uniform deformation given by the mapping

x1 =
1
4
(18 + 4X1 + 6X2);

x2 =
1
4
(14 + 6X2);

which, for a square of side 2 units initially centred at X = (0, 0), produces the
deformation shown below.

E2

E1

(1,–1)(–1,–1)

(1,1)

(2,2) (4,2)

(5,5)

(–1,1)

x2X2

x1X1

(7,5)

φ

φ–1(e2)*

e1 = φ  (E1)
*

φ  (E2)
*

e2

F =

[
∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

]
= 1

2

[
2 3
0 3

]
; F −1 = 1

3

[
3 −3
0 2

]
.

(continued)

* In the literature φ∗[ ] and φ−1
∗ [ ] are often written as φ∗ and φ∗ respectively.
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EXAMPLE 4.2: (cont.)

Unit vectors E1 and E2 in the initial configuration deform to

φ∗[E1] = F

[
1
0

]
=
[

1
0

]
; φ∗[E2] = F

[
0
1

]
=
[

1.5
1.5

]
;

and unit vectors in the current (deformed) configuration deform from

φ−1
∗ [e1] = F −1

[
1
0

]
=
[

1
0

]
; φ−1

∗ [e2] = F −1
[

0
1

]
=

[
−1

2
3

]
.

4.5 STRAIN

As a general measure of deformation, consider the change in the scalar product of
the two elemental vectors dX1 and dX2 shown in Figure 4.2 as they deform to dx1

and dx2. This change will involve both the stretching (that is, change in length) and
changes in the enclosed angle between the two vectors. Recalling Equation (4.7a,b),
the spatial scalar product dx1 · dx2 can be found in terms of the material vectors
dX1 and dX2 as

dx1 · dx2 = dX1 · C dX2, (4.14)

where C is the right Cauchy–Green deformation tensor, which is given in terms of
the deformation gradient as F as

C = F T F . (4.15)

Note that in Equation (4.15) the tensor C operates on the material vectors dX1 and
dX2 and consequently C is called a material tensor quantity.

Alternatively, the initial material scalar product dX1 · dX2 can be obtained
in terms of the spatial vectors dx1 and dx2 via the left Cauchy–Green or Finger
tensor b as*

dX1 · dX2 = dx1 · b−1dx2, (4.16)

where b is

b = FF T . (4.17)

* In C = F T F , F is on the right and in b = FF T , F is on the left.
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Observe that in Equation (4.16) b−1 operates on the spatial vectors dx1 and dx2,
and consequently b−1, or indeed b itself, is a spatial tensor quantity.

The change in scalar product can now be found in terms of the material vectors
dX1 and dX2 and the Lagrangian or Green strain tensor E as

1
2
(dx1 · dx2 − dX1 · dX2) = dX1 · E dX2, (4.18a)

where the material tensor E is

E =
1
2
(C − I). (4.18b)

Alternatively, the same change in scalar product can be expressed with reference
to the spatial elemental vectors dx1 and dx2 and the Eulerian or Almansi strain
tensor e as

1
2
(dx1 · dx2 − dX1 · dX2) = dx1 · e dx2, (4.19a)

where the spatial tensor e is

e =
1
2
(I − b−1). (4.19b)

EXAMPLE 4.3: Green and Almansi strain tensors

For the deformation given in Example 4.2 the right and left Cauchy–Green deforma-
tion tensors are respectively,

C = F T F =
1
2

[
2 3
3 9

]
and b = FF T =

1
4

[
13 9
9 9

]
,

from which the Green’s strain tensor is simply

E =
1
4

[
0 3
3 7

]
;

and the Almansi strain tensor is,

e =
1
18

[
0 9
9 −4

]
.

The physical interpretation of these strain measures will be demonstrated in the next
example.
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dX = dL N

dx = dl n
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Time = t
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X1, x1

FIGURE 4.3 Change in length.

Remark 4.3: The general nature of the scalar product as a measure of defor-
mation can be clarified by taking dX2 and dX1 equal to dX and conse-
quently dx1 = dx2 = dx. This enables initial (material) and current (spatial)
elemental lengths squared to be determined as (Figure 4.3)

dL2 = dX · dX; dl2 = dx · dx. (4.20a,b)

The change in the squared lengths that occurs as the body deforms from the
initial to the current configuration can now be written in terms of the elemental
material vector dX as

1
2
(dl2 − dL2) = dX · E dX, (4.21)

which, upon division by dL2, gives the scalar Green’s strain as

dl2 − dL2

2 dL2 =
dX

dL
· E

dX

dL
, (4.22)

where dX/dL is a unit material vector N in the direction of dX, hence,
finally

1
2

(
dl2 − dL2

dL2

)
= N · EN . (4.23)

Using Equation (4.19a), a similar expression involving the Almansi strain
tensor can be derived as

1
2

(
dl2 − dL2

dl2

)
= n · en, (4.24)

where n is a unit vector in the direction of dx.
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EXAMPLE 4.4: Physical interpretation of strain tensors

Referring to Example 4.2, the magnitude of the elemental vector dx2 is dl2 = 4.51/2.
Using (4.23), the scalar value of Green’s strain associated with the elemental material
vector dX2 is

εG =
1
2

(
dl2 − dL2

dL2

)
=

7
4
.

Again using Equation (4.23) and Example 4.3, the same strain can be determined
from Green’s strain tensor E as

εG = NT EN = [0, 1]
1
4

[
0 3
3 7

] [
0
1

]
=

7
4
.

Using Equation (4.24) the scalar value of the Almansi strain associated with the
elemental spatial vector dx2 is

εA =
1
2

(
dl2 − dL2

dl2

)
=

7
18

.

Alternatively, again using Equation (4.24) and Example 4.3 the same strain is deter-
mined from the Almansi strain tensor e as

εA = nT en =
[

1√
2
,

1√
2

]
1
18

[
0 9
9 −4

][ 1√
2

1√
2

]
=

7
18

.

Remark 4.4: In terms of the language of pull back and push forward, the
material and spatial strain measures can be related through the operator φ∗.
Precisely, how this operator works in this case can be discovered by recog-
nizing, because of their definitions, the equality

dx1 · e dx2 = dX1 · E dX2 (4.25)

for any corresponding pairs of elemental vectors. Recalling Equations (4.12–
4.13) enables the push-forward and pull-back operations to be written as

Push forward

e = φ∗ [E] = F −T EF −1. (4.26a)

Pull back

E = φ−1
∗ [e] = F T eF . (4.26b)
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4.6 POLAR DECOMPOSITION

The deformation gradient tensor F discussed in the previous sections transforms a
material vector dX into the corresponding spatial vector dx. The crucial role of F

is further disclosed in terms of its decomposition into stretch and rotation compo-
nents. The use of the physical terminology stretch and rotation will become clearer
later. For the moment, from a purely mathematical point of view, the tensor F is
expressed as the product of a rotation tensor R times a stretch tensor U to define
the polar decomposition as

F = RU . (4.27)

For the purpose of evaluating these tensors, recall the definition of the right Cauchy–
Green tensor C as

C = F T F = UT RT R U . (4.28)

Given that R is an orthogonal rotation tensor as defined in Equation (2.26), that is,
RT R = I , and choosing U to be a symmetric tensor gives a unique definition of
the material stretch tensor U in terms of C as

U2 = UU = C. (4.29)

In order to actually obtain U from this equation, it is first necessary to evaluate the
principal directions of C, denoted here by the eigenvector triad {N1,N2,N3} and
their corresponding eigenvalues λ2

1, λ2
2, and λ2

3, which enable C to be expressed as

C =
3∑

α=1

λ2
α Nα ⊗ Nα, (4.30)

where, because of the symmetry of C, the triad {N1,N2,N3} are orthogonal unit
vectors. Combining Equations (4.29) and (4.30), the material stretch tensor U can
be easily obtained as

U =
3∑

α=1

λα Nα ⊗ Nα. (4.31)

Once the stretch tensor U is known, the rotation tensor R can be easily evaluated
from Equation (4.27) as R = FU−1.
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In terms of this polar decomposition, typical material and spatial elemental
vectors are related as

dx = FdX = R(UdX). (4.32)

In the above equation, the material vector dX is first stretched to give UdX and
then rotated to the spatial configuration by R. Note that U is a material tensor
whereas R transforms material vectors into spatial vectors and is therefore, like F ,
a two-point tensor.

EXAMPLE 4.5: Polar decomposition (i)

This example illustrates the decomposition of the deformation gradient tensor F =
RU using the deformation shown below as

x1 = 1
4 (4X1 + (9 − 3X1 − 5X2 − X1X2)t);

x2 = 1
4 (4X2 + (16 + 8X1)t).

For X = (0, 0) and time t = 1 the deformation gradient F and right Cauchy–Green
tensor C are

F =
1
4

[
1 −5
8 4

]
; C =

1
16

[
65 27
27 41

]
,

from which the stretches λ1 and λ2 and principal material vectors N1 and N2 are
found as

λ1 = 2.2714; λ2 = 1.2107; N1 =
[

0.8385
0.5449

]
; N2 =

[
−0.5449

0.8385

]
.

Hence using (4.31) and R = FU−1, the stretch and rotation tensors can be found as

U =
[

1.9564 0.4846
0.4846 1.5257

]
; R =

[
0.3590 −0.9333
0.9333 0.3590

]
.

It is also possible to decompose F in terms of the same rotation tensor R

followed by a stretch in the spatial configuration as

F = V R, (4.33)

which can now be interpreted as first rotating the material vector dX to the spatial
configuration, where it is then stretched to give dx as

dx = FdX = V (RdX), (4.34)
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where the spatial stretch tensor V can be obtained in terms of U by combining
Equations (4.27) and (4.33) to give

V = RURT . (4.35)

Additionally, recalling Equation (4.17) for the left Cauchy–Green or Finger
tensor b gives

b = FF T = (V R)(RT V ) = V 2. (4.36)

Consequently, if the principal directions of b are given by the orthogonal spatial
vectors {n1,n2,n3} with associated eigenvalues λ̄2

1, λ̄2
2, and λ̄2

3, then the spatial
stretch tensor can be expressed as

V =
3∑

α=1

λ̄α nα ⊗ nα. (4.37)

Substituting Equation (4.31) for U into Expression (4.35) for V gives V in terms
of the vector triad in the undeformed configuration as

V =
3∑

α=1

λα (RNα) ⊗ (RNα). (4.38)

Comparing this expression with Equation (4.37) and noting that (RNα) remain
unit vectors, it must follow that

λα = λ̄α; nα = RNα; α = 1, 2, 3. (4.39a,b)

This equation implies that the two-point tensor R rotates the material vector triad
{N1,N2,N3} into the spatial vector triad {n1,n2,n3} as shown in Figure 4.4.
Furthermore, the unique eigenvalues λ2

1, λ2
2, and λ2

3 are the squares of the stretches
in the principal directions in the sense that taking a material vector dX1 of length
dL1 in the direction of N1, its corresponding push-forward spatial vector dx1 of
length dl1 is given as

dx1 = FdX1 = RU(dL1N1). (4.40)

Given that UN1 = λ1N1 and recalling Equation (4.39a,b) gives the spatial
vector dx1 as

dx1 = (λ1dL1)n1 = dl1n1. (4.41)
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FIGURE 4.4 Material and spatial vector triads.

Hence, the stretch λ1 gives the ratio between current and initial lengths as

λ1 =
dl1
dL1

. (4.42)

It is instructive to express the deformation gradient tensor in terms of the prin-
cipal stretches and principal directions. To this end, substitute Equation (4.31) for
U into Equation (4.27) for F and use (4.39a,b) to give

F =
3∑

α=1

λα nα ⊗ Nα. (4.43)

This expression clearly reveals the two-point nature of the deformation gradient
tensor in that it involves both the eigenvectors in the initial and final configurations.

It will be seen later that it is often convenient, and indeed more natural, to
describe the material behavior in terms of principal directions. Consequently, it is
pertinent to develop the relationships inherent in Equation (4.43) a little further.
For this purpose, consider the mapping of the unit vector Nα given by the tensor
F , which on substituting the polar decomposition F = RU gives

FNα = RUNα

= λαRNα

= λαnα. (4.44a)
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Alternative expressions relating Nα and nα can be similarly obtained as

F −T Nα =
1
λα

nα; (4.44b)

F −1nα =
1
λα

Nα; (4.44c)

F T nα = λαNα. (4.44d)

EXAMPLE 4.6: Polar decomposition (ii)

Building on Example 4.5 the physical meaning of the stretches λα and rotation R can
easily be illustrated. Using the deformation gradient F the principal material vectors
N1 and N2 deform (push forward) to give the orthogonal spatial vectors φ∗[N1]
and φ∗[N2] as

φ∗[N1] =
[

−0.4715
2.2219

]
; φ∗[N2] =

[
−1.1843
−0.2513

]
;

φ∗[N1] · φ∗[N2] = 0.

However, these two vectors may alternatively emerge by, firstly, stretching the mate-
rial vectors N1 and N2 to give

λ1N1 =
[

1.9046
1.2377

]
; λ2N2 =

[
−0.6597

1.0152

]
;

and, secondly, rotating these stretched vectors using the rotation tensor R [see Equa-
tion (4.44)]

φ∗[N1] = Rλ1N1 =
[

0.3590 −0.9333
0.9333 0.3590

] [
1.9046
1.2377

]
=
[

−0.4715
2.2219

]
;

similarly for φ∗[N2]. Hence the deformation of the eigenvectors N1 and N2 associ-
ated with F , at a particular material position, can be interpreted as a stretch followed
by a rotation of (about) 69◦. Finally, it is easy to confirm Equation (4.39a,b) that the
spatial unit vectors nα = RNα.

Equations (4.44a–b) can be interpreted in terms of the push forward of vec-
tors in the initial configuration to vectors in the current configuration. Likewise,
(4.44c–d) can be interpreted as alternative pull-back operations.
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Remark 4.5: The Lagrangian and Eulerian strain tensors, defined in Sec-
tion 4.5, can now be expressed in terms of U and V as

E =
1
2
(U2 − I) =

3∑
α=1

1
2
(
λ2

α − 1
)
Nα ⊗ Nα, (4.45)

e =
1
2
(I − V −2) =

3∑
α=1

1
2
(
1 − λ−2

α

)
nα ⊗ nα. (4.46)

These expressions motivate the definition of generalized material and spatial
strain measures of order n as

E(n) =
1
n

(Un − I) =
3∑

α=1

1
n

(
λn

α − 1
)
Nα ⊗ Nα; (4.47)

e(n) =
1
n

(I − V −n) =
3∑

α=1

1
n

(
1 − λ−n

α

)
nα ⊗ nα; (4.48)

e(−n) = RE(n)RT . (4.49)

In particular, the case n → 0 gives the material and spatial logarithmic strain
tensors

E(0) =
3∑

α=1

ln λα Nα ⊗ Nα = ln U ; (4.50)

e(0) =
3∑

α=1

ln λα nα ⊗ nα = ln V . (4.51)

4.7 VOLUME CHANGE

Consider an infinitesimal volume element in the material configuration with edges
parallel to the Cartesian axes given by dX1 = dX1E1, dX2 = dX2E2, and
dX3 = dX3E3, where E1, E2, and E3 are the orthogonal unit vectors (Figure 4.5).
The elemental material volume dV defined by these three vectors is clearly given as

dV = dX1dX2dX3. (4.52)
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FIGURE 4.5 Volume change.

In order to obtain the corresponding deformed volume, dv, in the spatial configu-
ration, note first that the spatial vectors obtained by pushing forward the previous
material vectors are

dx1 = FdX1 =
∂φ

∂X1
dX1; (4.53)

dx2 = FdX2 =
∂φ

∂X2
dX2; (4.54)

dx3 = FdX3 =
∂φ

∂X3
dX3. (4.55)

The triple product of these elemental vectors gives the deformed volume as

dv = dx1 · (dx2 × dx3) =
∂φ

∂X1
·
(

∂φ

∂X2
× ∂φ

∂X3

)
dX1 dX2 dX3. (4.56)

Noting that the above triple product is the determinant of F gives the volume change
in terms of the Jacobian J as

dv = J dV ; J = detF . (4.57)
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Finally, the element of mass can be related to the volume element in terms of
the initial and current densities as

dm = ρ0 dV = ρ dv. (4.58)

Hence, the conservation of mass or continuity equation can be expressed as

ρ0 = ρJ. (4.59)

4.8 DISTORTIONAL COMPONENT OF THE

DEFORMATION GRADIENT

When dealing with incompressible and nearly incompressible materials it is nec-
essary to separate the volumetric from the distortional (or isochoric) components
of the deformation. Such a separation must ensure that the distortional compo-
nent, namely F̂ , does not imply any change in volume. Noting that the determinant
of the deformation gradient gives the volume ratio, the determinant of F̂ must
therefore satisfy

det F̂ = 1. (4.60)

This condition can be achieved by choosing F̂ as

F̂ = J−1/3F . (4.61)

The fact that Condition (4.60) is satisfied is demonstrated as

det F̂ = det(J−1/3F )

= (J−1/3)3 det F

= J−1J

= 1. (4.62)

The deformation gradient F can now be expressed in terms of the volumetric and
distortional components, J and F̂ respectively, as

F = J1/3F̂ . (4.63)

This decomposition is illustrated for a two-dimensional case in Figure 4.6.
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FIGURE 4.6 Distortional component of F .

Similar decompositions can be obtained for other strain-based tensors such as
the right Cauchy–Green tensor C by defining its distortional component Ĉ as

Ĉ = F̂
T
F̂ . (4.64)

Substituting for F̂ from Equation (4.61) gives an alternative expression for Ĉ as

Ĉ = (detC)−1/3C; det C = J2. (4.65)

EXAMPLE 4.7: Distortional component of F

Again using Example 4.5, the function of the isochoric component F̂ of F can be
demonstrated. However, to proceed correctly it is necessary to introduce the third X3

dimension into the formulation, giving

F =
1
4

⎡⎣1 −5 0
8 4 0
0 0 4

⎤⎦ ; J = detF = 2.75,

from which F̂ is found as

F̂ = J− 1
3 F =

⎡⎣ 0.1784 −0.8922 0
1.4276 0.7138 0

0 0 0.7138

⎤⎦ .

Without loss of generality, consider the isochoric deformation at X = 0 of the orthog-
onal unit material vectors N1 = (0.8385, 0.5449, 0)T , N2 = (−0.5449, 0.8385, 0)T

and N3 = (0, 0, 1)T , for which the associated elemental material volume is dV = 1.
After deformation the material unit vectors push forward to give,

(continued)
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EXAMPLE 4.7: (cont.)

n̂1 = F̂N1 =

⎡⎣−0.3366
1.5856

0

⎤⎦ ; n̂2 = F̂N2 =

⎡⎣−0.8453
−0.1794

0

⎤⎦ ;

n̂3 = F̂N3 =

⎡⎣ 0
0

0.7138

⎤⎦ .

Since Nα are principal directions, n̂α are orthogonal vectors and the corresponding
elemental spatial volume is conveniently,

dv = ‖n̂1‖‖n̂2‖‖n̂3‖ = 1,

thus demonstrating the isochoric nature of F̂ .

EXAMPLE 4.8: Simple shear

x2X2

X1, x1

γ
1

Sometimes the motion of a body is isochoric and the distortional component of
F coincides with F . A well-known example is the simple shear of a two-dimensional
block as defined by the motion

x1 = X1 + γX2,
x2 = X2,

for any arbitrary value of γ. A simple derivation gives the deformation gradient and
its Jacobean J as

F =
[

1 γ

0 1

]
; J = detF = 1;

and the Lagrangian and Eulerian deformation tensors are

E =
1
2

[
0 γ

γ γ2

]
; e =

1
2

[
0 γ

γ −γ2

]
.
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4.9 AREA CHANGE

Consider an element of area in the initial configuration dA = dA N which after
deformation becomes da = da n as shown in Figure 4.7. For the purpose of
obtaining a relationship between these two vectors, consider an arbitrary material
vector dL, which after deformation pushes forward to dl. The corresponding initial
and current volume elements are

dV = dL · dA; (4.66a)

dv = dl · da. (4.66b)

Relating the current and initial volumes in terms of the Jacobian J and recalling
that dl = F dL gives

JdL · dA = (FdL) · da. (4.67)

The fact that the above expression is valid for any vector dL enables the elements
of area to be related as

da = JF −T dA. (4.68)

dA

dl

dL

da

P

dA

N p

n

da

φ

Time = 0

Time = t

X3, x3

X1, x1
X2, x2

FIGURE 4.7 Area change.
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4.10 LINEARIZED KINEMATICS

The strain quantities defined in the previous section are nonlinear expressions in
terms of the motion φ and will lead to nonlinear governing equations. These gov-
erning equations will need to be linearized in order to enable a Newton–Raphson
solution process. It is therefore essential to derive equations for the linearization of
the above strain quantities with respect to small changes in the motion.

4.10.1 Linearized Deformation Gradient

Consider a small displacement u(x) from the current configuration x = φt(X) =
φ(X, t) as shown in Figure 4.8. The deformation gradient F can be linearized in
the direction of u at this position as

DF (φt)[u] =
d

dε

∣∣∣∣
ε=0

F (φt + εu)

=
d

dε

∣∣∣∣
ε=0

∂(φt + εu)
∂X

=
d

dε

∣∣∣∣
ε=0

(
∂φt

∂X
+ ε

∂u

∂X

)
=

∂u

∂X

= (∇u)F . (4.69)

P

p

u

u

u (xp)

φt

Time = 0

Time = t
X1, x1

X2, x2

X3, x3

FIGURE 4.8 Linearized kinematics.
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Note that if u is given as a function of the initial position of the body particles X

(the material description) then

DF [u] =
∂u(X)

∂X
= ∇0u, (4.70)

where ∇0 indicates the gradient with respect to the coordinates at the initial
configuration.

4.10.2 Linearized Strain

Using Equation (4.69) and the product rule seen in Section 2.3.3, the Lagrangian (or
Green’s) strain can be linearized at the current configuration in the direction u as

DE[u] =
1
2
(F T DF [u] + DF T [u]F )

=
1
2
[F T ∇uF + F T (∇u)T F ]

=
1
2
F T [∇u + (∇u)T ]F . (4.71)

Note that half the tensor inside [ ] is the small strain tensor ε, and, therefore, DE[u]
can be interpreted as the pull back of the small strain tensor ε as

DE[u] = φ−1
∗ [ε] = F T εF . (4.72)

In particular, if the linearization of E is performed at the initial material configu-
ration, that is, when x = X and therefore F = I , then

DE0[u] = ε. (4.73)

Similarly, the right and left Cauchy–Green deformation tensors defined in
Equations (4.15, 4.17) can be linearized to give

DC[u] = 2F T εF ; (4.74a)

Db[u] = (∇u)b + b(∇u)T . (4.74b)
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4.10.3 Linearized Volume Change

The volume change has been shown earlier to be given by the Jacobian J = detF .

Using the chain rule given in Section 2.3.3, the directional derivative of J with
respect to an increment u in the spatial configuration is

DJ [u] = D det(F )[DF [u]]. (4.75)

Recalling the directional derivative of the determinant from (2.119) and the lin-
earization of F from Equation (4.69) gives

DJ [u] = J tr

(
F −1 ∂u

∂X

)
= J tr∇u

= Jdiv u. (4.76)

Alternatively, the above equation can be expressed in terms of the linear strain
tensor ε as

DJ [u] = J trε. (4.77)

Finally, the directional derivative of the volume element in the direction of u

emerges from Equation (4.57) as

D(dv)[u] = (tr ε) dv. (4.78)

4.11 VELOCITY AND MATERIAL TIME DERIVATIVES

4.11.1 Velocity

Obviously, many nonlinear processes are time-dependent; consequently, it is nec-
essary to consider velocity and material time derivatives of various quantities.
However, even if the process is not rate-dependent it is nevertheless convenient
to establish the equilibrium equations in terms of virtual velocities and associated
virtual time-dependant quantities. For this purpose consider the usual motion of the
body given by Equation (4.1) as

x = φ(X, t), (4.79)



4.11 V E L O C I T Y A N D M AT E R I A L T I M E D E R I VAT I V E S 119

Q

P

q

p

vq

vp

φ

Time = 0

Time = t

X3, x3

X1, x1
X2, x2

FIGURE 4.9 Particle velocity.

from which the velocity of a particle is defined as the time derivative of φ as
(Figure 4.9)

v(X, t) =
∂φ(X, t)

∂t
. (4.80)

Observe that the velocity is a spatial vector despite the fact that the equation has
been expressed in terms of the material coordinates of the particle X. In fact,
by inverting Equation (4.79) the velocity can be more consistently expressed as a
function of the spatial position x and time as

v(x, t) = v(φ−1(x, t), t). (4.81)

4.11.2 Material Time Derivative

Given a general scalar or tensor quantity g, expressed in terms of the material
coordinates X, the time derivative of g(X, t) denoted henceforth by ġ(X, t) or
dg(X, t)/dt is defined as

ġ =
dg

dt
=

∂g(X, t)
∂t

. (4.82)

This expression measures the change in g associated with a specific particle initially
located at X, and it is known as the material time derivative of g. Invariably, how-
ever, spatial quantities are expressed as functions of the spatial position x, in which
case the material derivative is more complicated to establish. The complication
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arises because as time progresses the specific particle being considered changes
spatial position. Consequently, the material time derivative in this case is obtained
from a careful consideration of the motion of the particle as

ġ(x, t) = lim
Δt→0

g(φ(X, t + Δt), t + Δt) − g(φ(X, t), t)
Δt

. (4.83)

This equation clearly illustrates that g changes in time (i) as a result of a change in
time but with the particle remaining in the same spatial position and (ii) because
of the change in spatial position of the specific particle. Using the chain rule,
Equation (4.83) gives the material derivative of g(x, t) as

ġ(x, t) =
∂g(x, t)

∂t
+

∂g(x, t)
∂x

∂φ(X, t)
∂t

=
∂g(x, t)

∂t
+ (∇g)v. (4.84)

The second term, involving the particle velocity in Equation (4.84), is often referred
to as the convective derivative.

EXAMPLE 4.9: Material time derivative

Here Example 4.1 is revisited to illustrate the calculation of a material time deriva-
tive based on either a material or spatial description. The material description of the
temperature distribution along the rod is T = Xt2, yielding Ṫ directly as Ṫ = 2Xt.
From the description of motion, x = (1+ t)X , the velocity is expressed as v = X or
v = x/(1 + t) in the material and spatial descriptions respectively. Using the spatial
description, T = xt2/(1 + t) gives

∂T (x, t)
∂t

=
(2t + t2)x
(1 + t)2

; ∇T =
∂T (x, t)

∂x
=

t2

(1 + t)
.

Hence from Equation (4.84), Ṫ = 2xt/(1 + t) = 2Xt.

4.11.3 Directional Derivative and Time Rates

Traditionally, linearization has been implemented in terms of an artificial time and
associated rates. This procedure, however, leads to confusion when real rates are
involved in the problem. It transpires that linearization as defined in Chapter 2,
Equation (2.101), avoids this confusion and leads to a much clearer finite element
formulation. Nevertheless, it is valuable to appreciate the relationship between lin-
earization and the material time derivative. For this purpose consider a general
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operator F that applies to the motion φ(X, t). The directional derivative of F in
the direction of v coincides with the time derivative of F , that is,

DF [v] =
d

dt
F(φ(X, t)). (4.85)

To prove this, let φX(t) denote the motion of a given particle and F (t) the function
of time obtained by applying the operator F on this motion as

F (t) = F(φX(t)); φX(t) = φ(X, t). (4.86)

Note first that the derivative with respect to time of a function f(t) is related to the
directional derivative of this function in the direction of an increment in time Δt as

Df [Δt] =
d

dε

∣∣∣∣
ε=0

f(t + εΔt) =
df

dt
Δt. (4.87)

Using this equation with Δt = 1 for the functions F (t) and φX(t) and recalling
the chain rule for directional derivatives given by Equation (2.105c) gives

d

dt
F(φ(X, t)) =

dF

dt

= DF [1]

= DF(φX(t))[1]

= DF [DφX [1]]

= DF [v]. (4.88)

A simple illustration of Equation (4.85) emerges from the time derivative of the
deformation gradient tensor F , which can be easily obtained from Equations (4.6)
and (4.80) as

Ḟ =
d

dt

(
∂φ

∂X

)
=

∂

∂X

(
∂φ

∂t

)
= ∇0v. (4.89)

Alternatively, recalling Equation (4.70) for the linearized deformation gradient DF

gives

DF [v] = ∇0v = Ḟ . (4.90)
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FIGURE 4.10 Velocity gradient.

4.11.4 Velocity Gradient

We have defined velocity as a spatial vector. Consequently, velocity was expressed
in Equation (4.81) as a function of the spatial coordinates as v(x, t). The deriva-
tive of this expression with respect to the spatial coordinates defines the velocity
gradient tensor l as

l =
∂v(x, t)

∂x
= ∇v. (4.91)

This is clearly a spatial tensor, which, as Figure 4.10 shows, gives the relative
velocity of a particle currently at point q with respect to a particle currently at p

as dv = ldx. The tensor l enables the time derivative of the deformation gradient
given by Equation (4.89) to be more usefully written as

Ḟ =
∂v
∂X

=
∂v
∂x

∂φ

∂X
= lF , (4.92)

from which an alternative expression for l emerges as

l = ḞF −1. (4.93)

4.12 RATE OF DEFORMATION

Consider again the initial elemental vectors dX1 and dX2 introduced in Section 4.4
and their corresponding pushed forward spatial counterparts dx1 and dx2 given as
(Figure 4.11)
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FIGURE 4.11 Rate of deformation.

dx1 = FdX1; dx2 = FdX2. (4.94a,b)

In Section 4.5 strain was defined and measured as the change in the scalar product
of two arbitrary vectors. Similarly, strain rate can now be defined as the rate of
change of the scalar product of any pair of vectors. For the purpose of measuring
this rate of change, recall from Section 4.5 that the current scalar product could be
expressed in terms of the material vectors dX1 and dX2 (which are not functions
of time) and the time-dependent right Cauchy–Green tensor C as

dx1 · dx2 = dX1 · C dX2. (4.95)

Differentiating this expression with respect to time and recalling the relationship
between the Lagrangian strain tensor E and the right Cauchy–Green tensor as
2E = (C − I) gives the current rate of change of the scalar product in terms of
the initial elemental vectors as

d

dt
(dx1 · dx2) = dX1 · Ċ dX2 = 2 dX1 · Ė dX2, (4.96)

where Ė, the derivative with respect to time of the Lagrangian strain tensor, is
known as the material strain rate tensor and can be easily obtained in terms of Ḟ as

Ė = 1
2Ċ = 1

2(Ḟ
T
F + F T Ḟ ). (4.97)

The material strain rate tensor, Ė, gives the current rate of change of the scalar
product in terms of the initial elemental vectors. Alternatively, it is often convenient
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to express the same rate of change in terms of the current spatial vectors. For this
purpose, recall first from Section 4.4 that Equations (4.94a,b) can be inverted as

dX1 = F −1dx1; dX2 = F −1dx2. (4.98a,b)

Introducing these expressions into Equation (4.96) gives the rate of change of the
scalar product in terms of dx1 and dx2 as

1
2

d

dt
(dx1 · dx2) = dx1 · (F −T ĖF −1)dx2. (4.99)

The tensor in the expression on the right-hand side is simply the pushed forward
spatial counterpart of Ė and is known as the rate of deformation tensor d given as

d = φ∗[Ė] = F −T ĖF −1; Ė = φ−1
∗ [d] = F T dF . (4.100a,b)

A more conventional expression for d emerges from the combination of Equa-
tions (4.92) for Ḟ and (4.97) for Ė to give, after simple algebra, the tensor d as the
symmetric part of l as

d = 1
2(l + lT ). (4.101)

Remark 4.6: A simple physical interpretation of the tensor d can be obtained
by taking dx1 = dx2 = dx as shown in Figure 4.12 to give

1
2

d

dt
(dx · dx) = dx · d dx. (4.102)

P

p

dL

N

n
φ

dl 

Time = t

Time = 0
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X2, x2

Time = t + dt

v dt

FIGURE 4.12 Rate of change of length.
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FIGURE 4.13 Lie derivative.

Expressing dx as dl n, where n is a unit vector in the direction of dx as shown
in Figure 4.12 gives

1
2

d

dt
(dl2) = dl2 n · d n, (4.103)

which noting that d(dl2)/dt = 2dl d(dl)/dt, finally yields

n · d n =
1
dl

d

dt
(dl) =

d ln(dl)
dt

. (4.104)

Hence the rate of deformation tensor d gives the rate of extension per unit
current length of a line element having a current direction defined by n. In
particular, for a rigid body motion d = 0.

Remark 4.7: Note that the spatial rate of deformation tensor d is not the
material derivative of the Almansi or spatial strain tensor e introduced in Sec-
tion 4.5. Instead, d is the push forward of Ė, which is the derivative with
respect to time of the pull back of e, that is

d = φ∗

[
d

dt
(φ−1

∗ [e])
]
. (4.105)

This operation is illustrated in Figure 4.13 and is known as the Lie derivative
of a tensor quantity over the mapping φ and is generally expressed as

Lφ[g] = φ∗

[
d

dt
(φ−1

∗ [g])
]
. (4.106)

4.13 SPIN TENSOR

The velocity gradient tensor l can be expressed as the sum of the symmetric rate of
deformation tensor d plus an additional antisymmetric component w as
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l = d + w, dT = d, wT = −w, (4.107)

where the antisymmetric tensor w is known as the spin tensor and can be obtained as

w = 1
2(l − lT ). (4.108)

The terminology employed for w can be justified by obtaining a relationship
between the spin tensor and the rate of change of the rotation tensor R introduced
in Section 4.6. For this purpose, note that l can be obtained from Equation (4.93),
thereby enabling Equation (4.108) to be rewritten as

w = 1
2(ḞF −1 − F −T Ḟ

T
). (4.109)

Combining this equation with the polar decomposition of F and its time deriva-
tive as

F = RU , (4.110a)

Ḟ = ṘU + RU̇ , (4.110b)

yields, after some simple algebra, w as

w = 1
2(ṘRT − RṘ

T
) + 1

2R(U̇U−1 − U−1U̇)RT . (4.111)

Finally, differentiation with respect to time of the expression RRT = I easily
shows that the tensor ṘRT is antisymmetric, that is,

RṘ
T

= −ṘRT , (4.112)

thereby allowing Equation (4.111) to be rewritten as

w = ṘRT + 1
2R(U̇U−1 − U−1U̇)RT . (4.113)

The second term in the above equation vanishes in several cases such as, for instance,
rigid body motion. A more realistic example arises when the principal directions
of strain given by the Lagrangian triad remain constant; such a case is the defor-
mation of a cylindrical rod. Under such circumstances, U̇ can be derived from
Equation (4.31) as

U̇ =
3∑

α=1

λ̇α Nα ⊗ Nα. (4.114)
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FIGURE 4.14 Angular velocity vector.

Note that this implies that U̇ has the same principal directions as U . Expressing
the inverse stretch tensor as U−1 =

∑3
α=1 λ−1

α Nα ⊗ Nα gives

U̇U−1 =
3∑

α=1

λ−1
α λ̇α Nα ⊗ Nα = U−1U̇ . (4.115)

Consequently, the spin tensor w becomes

w = ṘRT . (4.116)

Often the spin tensor w is physically interpreted in terms of its associated
angular velocity vector ω (see Section 2.2.2) defined as

ω1 = w32 = −w23, (4.117a)

ω2 = w13 = −w31, (4.117b)

ω3 = w21 = −w12, (4.117c)

so that, in the case of a rigid body motion where l = w, the incremental or relative
velocity of a particle q in the neighborhood of particle p shown in Figure 4.14 can
be expressed as

dv = w dx = ω × dx. (4.118)

Remark 4.8: In the case of a constant Lagrangian triad, useful equations
similar to (4.114) can be obtained for the material strain rate tensor Ė by
differentiating Equation (4.45) with respect to time to give

Ė =
3∑

α=1

1
2

dλ2
α

dt
Nα ⊗ Nα. (4.119)
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Furthermore, pushing this expression forward to the spatial configuration with
the aid of Equations (4.100a,b)a and (4.44b) enables the rate of deformation
tensor to be expressed in terms of the time rate of the logarithmic stretches as

d =
3∑

α=1

d ln λα

dt
nα ⊗ nα. (4.120)

In general, however, the Lagrangian triad changes in time, and both the mate-
rial strain rate and rate of deformation tensors exhibit off-diagonal terms (that
is, shear terms) when expressed in the corresponding material and spatial
principal axes. The general equation for Ė is easily obtained from Equa-
tion (4.45) as

Ė =
3∑

α=1

1
2

dλ2
α

dt
Nα ⊗ Nα +

3∑
α=1

1
2
λ2

α(Ṅα ⊗ Nα + Nα ⊗ Ṅα),

(4.121)

where time differentiation of the expression Nα · Nβ = δαβ to give
Ṅα · Nβ = −Ṅβ · Nα reveals that the rate of change of the Lagrangian triad
can be expressed in terms of the components of a skew symmetric tensor W as

Ṅα =
3∑

β=1

WαβNβ ; Wαβ = −Wβα. (4.122)

Substituting this expression into Equation (4.121) gives

Ė =
3∑

α=1

1
2

dλ2
α

dt
Nα ⊗ Nα +

3∑
α,β=1
α�=β

1
2
Wαβ

(
λ2

α − λ2
β

)
Nα ⊗ Nβ.

(4.123)

This equation will prove useful, in Chapter 6, when we study hyperelas-
tic materials in principal directions, where it will be seen that an explicit
derivation of Wαβ is unnecessary.

4.14 RATE OF CHANGE OF VOLUME

The volume change between the initial and current configuration was given in
Section 4.7 in terms of the Jacobian J as

dv = J dV ; J = detF . (4.124)
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FIGURE 4.15 Material rate of change of volume.

Differentiating this expression with respect to time gives the material rate of change
of the volume element as* (Figure 4.15)

d

dt
(dv) = J̇ dV =

J̇

J
dv. (4.125)

The relationship between time and directional derivatives discussed in Sec-
tion 4.11.3 can now be used to enable the material rate of change of the Jacobian
to be evaluated as

J̇ = DJ [v]. (4.126)

Recalling Equations (4.76–4.77) for the linearized volume change DJ [u] gives a
similar expression for J̇ where now the linear strain tensor ε has been replaced by
the rate of deformation tensor d to give

J̇ = J trd. (4.127)

Alternatively, noting that the trace of d is the divergence of v gives

J̇ = J div v. (4.128)

* Note that the spatial rate of change of the volume element is zero, that is, ∂(dv)/∂t = 0.
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An alternative equation for J̇ can be derived in terms of the material rate tensors
Ċ or Ė from Equations (4.127), (4.100a,b), and (4.97) to give

J̇ = J trd

= J tr(F −T ĖF −1)

= J tr(C−1Ė)

= JC−1 : Ė

= 1
2JC−1 : Ċ. (4.129)

This alternative expression for J̇ is used later, in Chapter 6, when we consider the
important topic of incompressible elasticity.

Finally, taking the material derivative of Equation (4.59) for the current density
enables the conservation of mass equation to be written in a rate form as

dρ

dt
+ ρ div v = 0. (4.130)

Alternatively, expressing the material rate of ρ in terms of the spatial rate ∂ρ/∂t

using Equation (4.84) gives the continuity equation in a form often found in the
fluid dynamics literature as

∂ρ

∂t
+ div (ρv) = 0. (4.131)

4.15 SUPERIMPOSED RIGID BODY MOTIONS

AND OBJECTIVITY

An important concept in solid mechanics is the notion of objectivity. This concept
can be explored by studying the effect of a rigid body motion superimposed on
the deformed configuration as seen in Figure 4.16. From the point of view of an
observer attached to and rotating with the body many quantities describing the
behavior of the solid will remain unchanged. Such quantities, for example the dis-
tance between any two particles and, among others, the state of stresses in the body,
are said to be objective. Although the intrinsic nature of these quantities remains
unchanged, their spatial description may change. To express these concepts in a
mathematical framework, consider an elemental vector dX in the initial configura-
tion that deforms to dx and is subsequently rotated to dx̃ as shown in Figure 4.16.
The relationship between these elemental vectors is given as

dx̃ = Qdx = QFdX, (4.132)
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FIGURE 4.16 Superimposed rigid body motion.

where Q is an orthogonal tensor describing the superimposed rigid body rotation.
Although the vector dx̃ is different from dx, their magnitudes are obviously equal.
In this sense it can be said the dx is objective under rigid body motions. This defi-
nition is extended to any vector a that transforms according to ã = Qa. Velocity is
an example of a non-objective vector because differentiating the rotated mapping
φ̃ = Qφ with respect to time gives

ṽ =
∂φ̃

∂t

= Q
∂φ

∂t
+ Q̇φ

= Qv + Q̇φ. (4.133)

Obviously, the magnitudes of v and ṽ are not equal as a result of the presence of
the term Q̇φ, which violates the objectivity criteria.

For the purpose of extending the definition of objectivity to second-order ten-
sors, note first from Equation (4.132) that the deformation gradients with respect
to the current and rotated configurations are related as

F̃ = QF . (4.134)

Using this expression together with Equations (4.15, 4.18b) shows that material
strain tensors such as C and E remain unaltered by the rigid body motion. In
contrast, introducing Equation (4.132) into Equations (4.17) and (4.19b) for b

and e gives

b̃ = QbQT ; (4.135a)

ẽ = QeQT . (4.135b)



132 K I N E M AT I C S

Note that although ẽ �= e, Equation (4.19a) shows that they both express the same
intrinsic change in length given by

1
2
(dl2 − dL2) = dx · e dx = dx̃ · ẽ dx̃. (4.136)

In this sense, e and any tensor, such as b, that transforms in the same manner is said
to be objective. Clearly, second-order tensors such as stress and strain that are used
to describe the material behavior must be objective. An example of a non-objective
tensor is the frequently encountered velocity gradient tensor l = ḞF −1. The rotated

velocity gradient l̃ = ˙̃
F (F̃ )−1 can be evaluated using Equation (4.134) to give

l̃ = QlQT + Q̇QT . (4.137)

Again, it is the presence of the second term in the above equation that renders
the spatial velocity gradient non-objective. Fortunately, it transpires that the rate of
deformation tensor d is objective. This is easily demonstrated by writing the rotated
rate of deformation d̃ in terms of l̃ as

d̃ = 1
2 (̃l + l̃

T
) = QdQT + 1

2(Q̇QT + QQ̇
T
). (4.138)

Observing that the term in brackets is the time derivative of QQT = I and is
consequently zero shows that the rate of deformation satisfies Equation (4.135) and
is therefore objective.

Exercises

1. (a) For the uniaxial strain case find the Engineering, Green’s, and Almansi
strain in terms of the stretch λ.
(b) Using these expressions show that when the Engineering strain is small,
all three strain measures converge to the same value (see Chapter 1, Equa-
tions (1.6) and (1.8)).

2. (a) If the deformation gradients at times t and t + Δt are F t and F t+Δt

respectively, show that the deformation gradient ΔF relating the incremental
motion from configuration at t to t + Δt is ΔF = F t+ΔtF

−1
t .

(b) Using the deformation given in Example 4.5 with X = (0, 0), t = 1,
Δt = 1, show that ΔF = F t+ΔtF

−1
t is correct by pushing forward the initial

vector G = [1, 1]T to vectors gt and gt+Δt at times t and t + Δt respectively,
and checking that gt+Δt = ΔFgt.

3. Using Equation (4.68) prove that the area ratio can be expressed alternatively as

da

dA
= J
√

N · C−1N
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4. Consider the planar (1-2) deformation for which the deformation gradient is

F =

⎡⎣F11 F12 0
F21 F22 0
0 0 λ3

⎤⎦
where λ3 is the stretch in the thickness direction normal to the plane (1-2).
If dA and da are the elemental areas in the (1-2) plane and H and h the
thicknesses before and after deformation, show that

da

dA
= j and h = H

J

j
,

where j = det(Fkl), k, l = 1, 2.
5. Using Figure 4.4 as a guide, draw a similar diagram that interprets the polar

decomposition Equation (4.34) dx = V (RdX).
6. Show that the condition for an elemental material vector dX = NdL to

exhibit zero extension is N · CN = 1, where C = F T F .
7. Prove Equation (4.44b), that is,

F −T Nα =
1
λα

nα.

8. The motion of a body, at time t, is given by

x = F (t)X; F (t) =

⎡⎢⎣ 1 t t2

t2 1 t

t t2 1

⎤⎥⎦ ;

F −1(t) =
1

(t3 − 1)

⎡⎢⎣−1 t 0
0 −1 t

t 0 −1

⎤⎥⎦ .

Find the velocity of the particle (a) initially at X = (1, 1, 1) at time t = 0 and
(b) currently at x = (1, 1, 1) at time t = 2. Using J = dv/dV , show that at
time t = 1 the motion is not realistic.

9. For a pure expansion the deformation gradient is F = αI , where α is a scalar.
Show that the rate of deformation is

d =
α̇

α
I .

10. Show that at the initial configuration (F = I) the linearization of Ĉ in the
direction of a displacement u is

DĈ[u] = 2ε′ = 2
[
ε − 1

3(trε)I
]
.



C H A P T E R F I V E

STRESS AND EQUILIBRIUM

5.1 INTRODUCTION

This chapter will introduce the stress and equilibrium concepts for a deformable
body undergoing a finite motion. Stress is first defined in the current configuration
in the standard way as force per unit area. This leads to the well-known Cauchy
stress tensor as used in linear analysis. We will then derive the differential equations
enforcing translational and rotational equilibrium and the equivalent principle of
virtual work.

In contrast to linear small displacement analysis, stress quantities that refer
back to the initial body configuration can also be defined. This will be achieved
using work conjugacy concepts that will lead to the Piola–Kirchhoff stress tensors
and alternative equilibrium equations. Finally, the objectivity of several stress rate
tensors is considered.

5.2 CAUCHY STRESS TENSOR

5.2.1 Definition

Consider a general deformable body at its current position as shown in Figure 5.1. In
order to develop the concept of stress it is necessary to study the action of the forces
applied by one region R1 of the body on the remaining part R2 of the body with
which it is in contact. For this purpose consider the element of area Δa normal to n

in the neighborhood of spatial point p shown in Figure 5.1. If the resultant force on
this area is Δp, the traction vector t corresponding to the normal n at p is defined as

t(n) = lim
Δa→0

Δp

Δa
, (5.1)

134
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FIGURE 5.1 Traction vector.

where the relationship between t and n must be such that it satisfies Newton’s third
law of action and reaction, which is expressed as (see Figure 5.1)

t(−n) = −t(n). (5.2)

To develop the idea of a stress tensor, let the three traction vectors associated
with the three Cartesian directions e1, e2, and e3 be expressed in a component form
as (Figure 5.2)

t(e1) = σ11e1 + σ21e2 + σ31e3; (5.3a)

t(e2) = σ12e1 + σ22e2 + σ32e3; (5.3b)

t(e3) = σ13e1 + σ23e2 + σ33e3. (5.3c)

t (e2)

e3

e2

e1

σ32

σ22

σ12

FIGURE 5.2 Stress components.
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e1

FIGURE 5.3 Elemental tetrahedron.

Although the general equilibrium of a deformable body will be discussed in
detail in the next section, a relationship between the traction vector t corresponding
to a general direction n and the components σij can be obtained only by studying
the translational equilibrium of the elemental tetrahedron shown in Figure 5.3. Let-
ting f be the force per unit volume acting on the body at point p (which in general
could also include inertia terms), the equilibrium of the tetrahedron is given as

t(n) da +
3∑

i=1

t(−ei) dai + f dv = 0, (5.4)

where dai = (n · ei) da is the projection of the area da onto the plane orthogonal
to the Cartesian direction i (see Figure 5.3) and dv is the volume of the tetrahe-
dron. Dividing Equation (5.4) by da, recalling Newton’s third law, using Equations
(5.3a–c), and noting that dv/da → 0 gives

t(n) = −
3∑

j=1

t(−ej)
daj

da
− f

dv

da

=
3∑

j=1

t(ej) (n · ej)

=
3∑

i,j=1

σij(ej · n)ei. (5.5)

Observing that (ej · n)ei can be rewritten in terms of the tensor product as
(ei ⊗ ej)n gives
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t(n) =
3∑

i,j=1

σij(ej · n)ei

=
3∑

i,j=1

σij(ei ⊗ ej)n

=

[
3∑

i,j=1

σij(ei ⊗ ej)

]
n, (5.6)

which clearly identifies a tensor σ, known as the Cauchy stress tensor, that relates
the normal vector n to the traction vector t as

t(n) = σn; σ =
3∑

i,j=1

σij ei ⊗ ej . (5.7a,b)

EXAMPLE 5.1: Rectangular block under self-weight (i)

X1

X2

x1

x2

dx1

e2

h
H

A simple example of a two-dimensional stress tensor results from the self-weight of
a block of uniform initial density ρ0 resting on a frictionless surface as shown in the
figure above. For simplicity we will assume that there is no lateral deformation (in
linear elasticity this would imply that the Poisson ratio ν = 0).

Using Definition (5.1), the traction vector t associated with the unit vertical vec-
tor e2 at an arbitrary point at height x2, initially at height X2, is equal to the weight of
material above an infinitesimal section divided by the area of this section. This gives

t(e2) =
(−
∫ h

y
ρg dx2) e2dx1

dx1
,

where g is the acceleration of gravity and h is the height of the block after deforma-
tion. The mass conservation Equation (4.57) implies that ρdx1dx2 = ρ0dX1dX2,
which in conjunction with the lack of lateral deformation gives

t(e2) = ρ0g(H − X2) e2.

Combining this equation with the fact that the stress components σ12 and σ22 are
defined in Equation (5.3) by the expression t(e2) = σ12e1 + σ22e2 gives σ12 = 0

(continued)
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EXAMPLE 5.1: (cont.)

and σ22 = −ρ0g(H − X2). Using a similar process and given the absence of hori-
zontal forces, it is easy to show that the traction vector associated with the horizontal
unit vector is zero and consequently σ11 = σ21 = 0. The complete stress tensor in
Cartesian components is therefore

[σ] =
[

0 0
0 ρ0g(X2 − H)

]
.

The Cauchy stress tensor can alternatively be expressed in terms of its principal
directions m1,m2,m3 and principal stresses σαα for α = 1, 2, 3 as

σ =
3∑

α=1

σαα mα ⊗ mα, (5.8)

where from Equations (2.57a–b), the eigenvectors mα and eigenvalues σαα satisfy

σmα = σααmα. (5.9)

In the next chapter we shall show that for isotropic materials the principal directions
mα of the Cauchy stress coincide with the principal Eulerian triad nα introduced
in the previous chapter.

Note that σ is a spatial tensor; equivalent material stress measures associated
with the initial configuration of the body will be discussed later. Note also that the
well-known symmetry of σ has not yet been established. In fact this results from
the rotational equilibrium equation, which is discussed in the following section.

5.2.2 Stress Objectivity

Because the Cauchy stress tensor is a key feature of any equilibrium or material
equation, it is important to inquire whether σ is objective as defined in Section 4.15.
For this purpose consider the transformations of the normal and traction vectors
implied by the superimposed rigid body motion Q shown in Figure 5.4 as

t̃(ñ) = Qt(n); (5.10a)

ñ = Qn. (5.10b)

Using the relationship between the traction vector and stress tensor given by Equa-
tion (5.7a,b)a in conjunction with the above equation gives

σ̃ = QσQT . (5.11)
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FIGURE 5.4 Superimposed rigid body motion.

The rotation of σ given by the above equation conforms with the definition of objec-
tivity given by Equation (4.135), and hence σ is objective and a valid candidate for
inclusion in a material description. It will be shown later that the material rate of
change of stress is not an objective tensor.

5.3 EQUILIBRIUM

5.3.1 Translational Equilibrium

In order to derive the differential static equilibrium equations, consider the spatial
configuration of a general deformable body defined by a volume v with boundary
area ∂v as shown in Figure 5.5. We can assume that the body is under the action
of body forces f per unit volume and traction forces t per unit area acting on
the boundary. For simplicity, however, inertia forces will be ignored, and there-
fore translational equilibrium implies that the sum of all forces acting on the body
vanishes. This gives

∫
∂v

t da +
∫

v
f dv = 0. (5.12)

Using Equation (5.7a,b)a for the traction vector enables Equation (5.12) to be
expressed in terms of the Cauchy stresses as∫

∂v
σn da +

∫
v
f dv = 0. (5.13)
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FIGURE 5.5 Equilibrium.

The first term in this equation can be transformed into a volume integral by using
the Gauss theorem given in Equation (2.139) to give∫

v
(div σ + f) dv = 0, (5.14)

where the vector div σ is defined in Section 2.4.1. The fact that the above equation
can be equally applied to any enclosed region of the body implies that the integrand
function must vanish, that is,

div σ + f = 0. (5.15)

EXAMPLE 5.2: Rectangular block under self-weight (ii)

It is easy to show that the stress tensor given in Example 5.1 satisfies the equilibrium
equation. For this purpose, note first that in this particular case the forces f per unit
volume are f = −ρge2, or in component form,

[f ] =
[

0
−ρg

]
.

Additionally, using Definition (2.134), the two-dimensional components of the diver-
gence of σ are

[div σ] =

[
∂σ11
∂x1

+ ∂σ12
∂x2

∂σ21
∂x1

+ ∂σ22
∂x2

]
=
[

0
ρ0g

dX2
dx2

]
,

which combined with the mass conservation equation ρdx1dx2 = ρ0dX1dX2 and
the lack of lateral deformation implies that Equation (5.14) is satisfied.
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This equation is known as the local (that is, pointwise) spatial equilibrium equation
for a deformable body. In anticipation of situations during a solution procedure in
which equilibrium is not yet satisfied, the above equation defines the pointwise
out-of-balance or residual force per unit volume r as

r = div σ + f . (5.16)

5.3.2 Rotational Equilibrium

Thus far the well-known symmetry of the Cauchy stresses has not been established.
This is achieved by considering the rotational equilibrium of a general body, again
under the action of traction and body forces. This implies that the total moment of
body and traction forces about any arbitrary point, such as the origin, must vanish,
that is,∫

∂v
x × t da +

∫
v
x × f dv = 0, (5.17)

where it should be recalled that the cross product of a force with a position vector
x yields the moment of that force about the origin. Equation (5.7a,b)a for the trac-
tion vector in terms of the Cauchy stress tensor enables the above equation to be
rewritten as,∫

∂v
x × (σn) da +

∫
v
x × f dv = 0. (5.18)

Using the Gauss theorem and after some algebra, the equation becomes*

∫
v
x × (div σ) dv +

∫
v
E : σT dv +

∫
v
x × f dv = 0, (5.19)

* To show this it is convenient to use indicial notation and the summation convention whereby repeated indices
imply addition. Equation (2.136) then gives

∫
∂v

Eijkxjσklnl da =
∫

v

∂

∂xl
(Eijkxjσkl) dv

=
∫

v
Eijkxj

∂σkl

∂xl
dv +

∫
v

Eijkσkj dv

=
∫

v
(x × div σ)i dv +

∫
v
(E : σT )i dv.
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where E is the third-order alternating tensor, defined in Section 2.2.4 (E ijk = 1 if
the permutation {i, j, k} is even, –1 if it is odd, and 0 if any indices are repeated),
so that the vector E : σT is

E : σT =

⎡⎣σ32 − σ23

σ13 − σ31

σ21 − σ12

⎤⎦ . (5.20)

Rearranging terms in Equation (5.19) to take into account the translational equilib-
rium Equation (5.15) and noting that the resulting equation is valid for any enclosed
region of the body gives

E : σT = 0, (5.21)

which, in view of Equation (5.20), clearly implies the symmetry of the Cauchy
stress tensor σ.

5.4 PRINCIPLE OF VIRTUAL WORK

Generally, the finite element formulation is established in terms of a weak form of
the differential equations under consideration. In the context of solid mechanics this
implies the use of the virtual work equation. For this purpose, let δv denote an arbi-
trary virtual velocity from the current position of the body as shown in Figure 5.6.
The virtual work, δw, per unit volume and time done by the residual force r during
this virtual motion is r · δv, and equilibrium implies

δw = r · δv = 0. (5.22)

Note that the above scalar equation is fully equivalent to the vector equation r = 0.
This is due to the fact that δv is arbitrary, and hence by choosing δv = [1, 0, 0]T ,
followed by δv = [0, 1, 0]T and δv = [0, 0, 1]T , the three components of the equa-
tion r = 0 are retrieved. We can now use Equation (5.16) for the residual vector
and integrate over the volume of the body to give a weak statement of the static
equilibrium of the body as

δW =
∫

v
(div σ + f) · δv dv = 0. (5.23)
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FIGURE 5.6 Principle of virtual work.

A more common and useful expression can be derived by recalling Property (2.135e)
to give the divergence of the vector σδv as

div (σδv) = (div σ) · δv + σ : ∇δv. (5.24)

Using this equation together with the Gauss theorem enables Equation (5.23) to be
rewritten as∫

∂v
n · σδv da −

∫
v
σ : ∇δv dv +

∫
v
f · δv dv = 0. (5.25)

The gradient of δv is, by definition, the virtual velocity gradient δl. Additionally,
we can use Equation (5.7a,b)a for the traction vector and the symmetry of σ to
rewrite n · σδv as δv · t, and consequently Equation (5.24) becomes∫

v
σ : δl dv =

∫
v
f · δv dv +

∫
∂v

t · δv da. (5.26)

Finally, expressing the virtual velocity gradient in terms of the symmetric virtual
rate of deformation δd and the antisymmetric virtual spin tensor δw and taking into
account again the symmetry of σ gives the spatial virtual work equation as

δW =
∫

v
σ : δd dv −

∫
v
f · δv dv −

∫
∂v

t · δv da = 0. (5.27)
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This fundamental scalar equation states the equilibrium of a deformable body and
will become the basis for the finite element discretization.

5.5 WORK CONJUGACY AND ALTERNATIVE STRESS

REPRESENTATIONS

5.5.1 The Kirchhoff Stress Tensor

In Equation (5.27) the internal virtual work done by the stresses is expressed as

δWint =
∫

v
σ : δd dv. (5.28)

Pairs such as σ and d in this equation are said to be work conjugate with respect
to the current deformed volume in the sense that their product gives work per unit
current volume. By expressing the virtual work equation in the material coordinate
system, alternative work conjugate pairs of stresses and strain rates will emerge.
To achieve this objective, the spatial virtual work Equation (5.27) is first expressed
with respect to the initial volume and area by transforming the integrals using
Equation (4.56) for dv to give∫

V
Jσ : δd dV =

∫
V

f0 · δv dV +
∫

∂V
t0 · δv dA, (5.29)

where f0 = Jf is the body force per unit undeformed volume and t0 = t(da/dA)
is the traction vector per unit initial area, where the area ratio can be obtained after
some algebra from Equation (4.68) or Exercise (4.3) as

da

dA
=

J√
n · bn

= J
√

N · C−1N . (5.30)

The internal virtual work given by the left-hand side of Equation (5.29) can be
expressed in terms of the Kirchhoff stress tensor τ as

δWint =
∫

V
τ : δd dV ; τ = Jσ. (5.31a,b)

This equation reveals that the Kirchhoff stress tensor τ is work conjugate to the
rate of deformation tensor with respect to the initial volume. Note that the work
per unit current volume is not equal to the work per unit initial volume. However,
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Equation (5.31a,b)b and the relationship ρ = ρ0/J ensure that the work per unit
mass is invariant and can be equally written in the current or initial configuration as

1
ρ
σ : d =

1
ρ0

τ : d. (5.32)

5.5.2 The First Piola–Kirchhoff Stress Tensor

The crude transformation that resulted in the internal virtual work given above is
not entirely satisfactory because it still relies on the spatial quantities τ and d.
To alleviate this lack of consistency, note that the symmetry of σ together with
Equation (4.93) for l in terms of Ḟ and the properties of the trace gives

δWint =
∫

V
Jσ : δl dV

=
∫

V
Jσ : (δḞF −1) dV

=
∫

V
tr(JF −1σδḞ ) dV

=
∫

V
(JσF −T ) : δḞ dV . (5.33)

We observe from this equality that the stress tensor work conjugate to the rate of the
deformation gradient Ḟ is the so-called first Piola–Kirchhoff stress tensor given as

P = JσF −T . (5.34a)

Note that like F , the first Piola–Kirchhoff tensor is an unsymmetric two-point tensor
with components given as

P =
3∑

i,I=1

PiI ei ⊗ EI ; PiI =
3∑

j=1

Jσij(F −1)Ij . (5.34b,c)

We can now rewrite the equation for the principle of virtual work in terms of the
first Piola–Kirchhoff tensor as∫

V
P : δḞ dV =

∫
V

f0 · δv dV +
∫

∂V
t0 · δv dA. (5.35)

Additionally, if the procedure employed to obtain the virtual work Equation (5.27)
from the spatial differential equilibrium Equation (5.24) is reversed, an equivalent
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version of the differential equilibrium equation is obtained in terms of the first
Piola–Kirchhoff stress tensor as

r0 = Jr = DIVP + f0 = 0, (5.36)

where DIVP is the divergence of P with respect to the initial coordinate system
given as

DIVP = ∇0P : I ; ∇0P =
∂P

∂X
. (5.37)

Remark 5.1: It is instructive to re-examine the physical meaning of the
Cauchy stresses and thence the first Piola–Kirchhoff stress tensor. An ele-
ment of force dp acting on an element of area da = n da in the spatial
configuration can be written as

dp = tda = σda. (5.38)

Broadly speaking, the Cauchy stresses give the current force per unit deformed
area, which is the familiar description of stress. Using Equation (4.68) for the
spatial area vector, dp can be rewritten in terms of the undeformed area cor-
responding to da to give an expression involving the first Piola–Kirchhoff
stresses as

dp = JσF −T dA = PdA. (5.39)

This equation reveals that P , like F , is a two-point tensor that relates an
area vector in the initial configuration to the corresponding force vector in the
current configuration as shown in Figure 5.7. Consequently, the first Piola–
Kirchhoff stresses can be loosely interpreted as the current force per unit of
undeformed area.

EXAMPLE 5.3: Rectangular block under self-weight (iii)

Using the physical interpretation for P given in Remark 5.1 we can find the first Piola–
Kirchhoff tensor corresponding to the state of stresses described in Example 5.1. For
this purpose note first that dividing Equation (5.39) by the current area element da

gives the traction vector associated with a unit normal N in the initial configuration as

t(N) = PN
dA

da
.

(continued)
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EXAMPLE 5.3: (cont.)

Using this equation with N = E2 for the case described in Example 5.1 where the
lack of lateral deformation implies da = dA gives

t(E2) = PE2

=
2∑

i,I=1

PiI(ei ⊗ EI)E2

= P12e1 + P22e2.

Combining the final equation with the fact that t(E2) = t(e2) = −ρ0g(H − X2)e2

as explained in Example 5.1, we can identify P12 = 0 and P22 = ρ0g(X2 − H).
Using a similar analysis for t(E1) eventually yields the components of P as

[P ] =
[
0 0
0 ρ0g(X2 − H)

]
,

which for this particular example coincide with the components of the Cauchy stress
tensor. In order to show that the above tensor P satisfies the equilibrium Equa-
tion (5.37), we first need to evaluate the force vector f0 per unit initial volume as

f0 = f
dv

dV

= −ρ
dv

dV
ge2

= −ρ0ge2.

Combining this expression with the divergence of the above tensor P immediately
leads to the desired result.

dp

p

PdA

da
N

n

d P

X3, x3

X1, x1
X2, x2

Time = 0 Time = t

φ

FIGURE 5.7 Interpretation of stress tensors.
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5.5.3 The Second Piola–Kirchhoff Stress Tensor

The first Piola-Kirchhoff tensor P is an unsymmetric two-point tensor and as such
is not completely related to the material configuration. It is possible to contrive
a totally material symmetric stress tensor, known as the second Piola–Kirchhoff
stress S, by pulling back the spatial element of force dp from Equation (5.39) to
give a material force vector dP (Figure 5.7) as

dP = φ−1
∗ [dp] = F −1dp. (5.40)

Substituting from Equation (5.39) for dp gives the transformed force in terms of
the second Piola–Kirchhoff stress tensor S and the material element of area dA as

dP = S dA; S = JF −1σF −T . (5.41a,b)

It is now necessary to derive the strain rate work conjugate to the second Piola–
Kirchhoff stress in the following manner. From Equation (4.100), it follows that
the material and spatial virtual rates of deformation are related as

δd = F −T δĖF −1. (5.42)

Substituting this relationship into the internal virtual work Equation (5.28) gives

δWint =
∫

v
σ : δd dv

=
∫

V
Jσ : (F −T δĖF −1) dV

=
∫

V
tr(F −1JσF −T δĖ) dV

=
∫

V
S : δĖ dV , (5.43)

which shows that S is work conjugate to Ė and enables the material virtual work
equation to be alternatively written in terms of the second Piola–Kirchhoff tensor as

∫
V

S : δĖ dV =
∫

V
f0 · δv dV +

∫
∂V

t0 · δv dA. (5.44)

For completeness the inverse of Equations (5.34a) and (5.41b) is given as

σ = J−1PF T ; σ = J−1FSF T . (5.45a,b)
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Remark 5.2: Applying the pull-back and push-forward concepts to the
Kirchhoff and second Piola–Kirchhoff tensors yields

S = F −1τF −T = φ−1
∗ [τ ]; τ = FSF T = φ∗[S], (5.46a,b)

from which the second Piola–Kirchhoff and the Cauchy stresses are related as

S = Jφ−1
∗ [σ]; σ = J−1φ∗[S]. (5.47a,b)

In the above equation S and σ are related by the so-called Piola transforma-
tion which involves a push-forward or pull-back operation combined with the
volume scaling J .

Remark 5.3: A useful interpretation of the second Piola–Kirchhoff stress
can be obtained by observing that in the case of rigid body motion the polar
decomposition given by Equation (4.27) indicates that F = R and J = 1.
Consequently, the second Piola–Kirchhoff stress tensor becomes,

S = RT σR. (5.48)

Comparing this equation with the transformation Equations (2.42) given in
Section 2.2.2, it transpires that the second Piola–Kirchhoff stress components
coincide with the components of the Cauchy stress tensor expressed in the
local set of orthogonal axes that results from rotating the global Cartesian
directions according to R.

EXAMPLE 5.4: Independence of S from Q

A useful property of the second Piola–Kirchhoff tensor S is its independence from
possible superimposed rotations Q on the current body configuration. To prove this,
note first that because φ̃ = Qφ, then F̃ = QF and J̃ = J . Using these equations
in conjunction with the objectivity of σ as given by Equation (5.11) gives

S̃ = J̃F̃ −1σ̃F̃ −T

= JF −1QT QσQT QF −T

= S.

(continued)
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EXAMPLE 5.4: (cont.)

dp
n

dp

∼

p

X3, x3

X2, x2
X1, x1

da

p∼

n∼

∼

Q

dA P

d P
N

φ

φ

EXAMPLE 5.5: Biot stress tensor

Alternative stress tensors work conjugate to other strain measures can be contrived.
For instance, the material stress tensor T work conjugate to the rate of the stretch
tensor U̇ is associated with the name of Biot. In order to derive a relationship between
T and S note first that differentiating with respect to time the equations UU = C

and 2E = C − I gives

Ė = 1
2 (UU̇ + U̇U).

With the help of this relationship we can express the internal work per unit of initial
volume as

S : Ė = S : 1
2 (UU̇ + U̇U)

= 1
2 tr(SUU̇ + SU̇U)

= 1
2 tr(SUU̇ + USU̇)

= 1
2 (SU + US) : U̇ ,

and therefore the Biot tensor work conjugate to the stretch tensor is

T = 1
2 (SU + US).

Using the polar decomposition and the relationship between S and P , namely,
P = FS, an alternative equation for T emerges as,

T = 1
2 (RTP + P TR).
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5.5.4 Deviatoric and Pressure Components

In many practical applications such as metal plasticity, soil mechanics, and biome-
chanics, it is physically relevant to isolate the hydrostatic pressure component p

from the deviatoric component σ′ of the Cauchy stress tensor as

σ = σ′ + pI ; p =
1
3

trσ =
1
3
σ : I , (5.49a,b)

where the deviatoric Cauchy stress tensor σ′ satisfies trσ′ = 0.
Similar decompositions can be established in terms of the first and second

Piola–Kirchhoff stress tensors. For this purpose, we simply substitute the above
decomposition into Equations (5.34a) for P and (5.41a,b)b for S to give

P = P ′ + pJF −T ; P ′ = Jσ′F −T ; (5.50a)

S = S′ + pJC−1; S′ = JF −1σ′F −T . (5.50b)

The tensors S′ and P ′ are often referred to as the true deviatoric components of
S and P . Note that although the trace of σ′ is zero, it does not follow that the
traces of S′ and P ′ must also vanish. In fact, the corresponding equations can
be obtained from Equations (5.50a–b) and Properties (2.50, 2.51) of the trace and
double contractions as

S′ : C = 0; (5.51a)

P ′ : F = 0. (5.51b)

The above equations are important as they enable the hydrostatic pressure p to be
evaluated directly from either S or P as

p =
1
3
J−1 P : F ; (5.52a)

p =
1
3
J−1 S : C. (5.52b)

Proof of the above equations follows rapidly by taking the double contractions of
(5.50a) by F and (5.50b) by C.
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EXAMPLE 5.6: Proof of Equation (5.51a)

Equation (5.51a) is easily proved as follows:

S′ : C = (JF −1σ′F −T ) : C

= J tr(F −1σ′F −T C)

= J tr(σ′F −T F T FF −1)

= J trσ′

= 0.

A similar procedure can be used for (5.51b).

5.6 STRESS RATES

In Section 4.15 objective tensors were defined by imposing that under rigid body
motions they transform according to Equation (4.135). Unfortunately, time differ-
entiation of Equation (5.11) shows that the material time derivative of the stress
tensor, σ̇, fails to satisfy this condition as

˙̃σ = Qσ̇QT + Q̇σQT + QσQ̇
T
. (5.53)

Consequently, ˙̃σ �= Qσ̇QT unless the rigid body rotation is not a time-dependent
transformation. Many rate-dependent materials, however, must be described in
terms of stress rates and the resulting constitutive models must be frame-indifferent.
It is therefore essential to derive stress rate measures that are objective. This can
be achieved in several ways, each leading to a different objective stress rate tensor.
The simplest of these tensors is due to Truesdell and is based on the fact that the
second Piola–Kirchhoff tensor is intrinsically independent of any possible rigid
body motion. The Truesdell stress rate σ◦ is thus defined in terms of the Piola
transformation of the time derivative of the second Piola–Kirchhoff stress as

σ◦ = J−1φ∗[Ṡ] = J−1F

[
d

dt
(JF −1σF −T )

]
F T . (5.54)

The time derivatives of F −1 in the above equation can be obtained by differentiating
the expression FF −1 = I and using Equation (4.93) to give

d

dt
F −1 = −F −1l, (5.55)

which combined with Equation (4.127) for J̇ gives the Truesdell rate of stress as

σ◦ = σ̇ − lσ − σlT + (trl)σ. (5.56)
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The Truesdell stress rate tensor can be reinterpreted in terms of the Lie derivative
of the Kirchhoff stresses as

Jσ◦ = Lφ[τ ]. (5.57)

In fact, this expression defines what is known as the Truesdell rate of the Kirchhoff
tensor τ◦ = Jσ◦, which can be shown from Equation (5.56) or Equation (5.57)
to be

τ◦ = τ̇ − lτ − τlT . (5.58)

Alternative objective stress rates can be derived in terms of the Lie derivative
of the Cauchy stress tensor to give the Oldroyd stress rate σ• as

σ• = Lφ[σ]

= F

[
d

dt
(F −1σF −T )

]
F T

= σ̇ − lσ − σlT . (5.59)

If the pull-back–push-forward operations are performed with F T and F −T respec-
tively, the resulting objective stress rate tensor is the convective stress rate σ

given as

σ
 = F −T

[
d

dt
(F T σF )

]
F −1

= σ̇ + lT σ + σl. (5.60)

A simplified objective stress rate can be obtained by ignoring the stretch com-
ponent of F in Equations (5.54), (5.59), or (5.60), thus performing the pull-back
and push-forward operations using only the rotation tensor R. This defines the
so-called Green-Naghdi stress rate σ	, which with the help of Equation (4.112) is
given as

σ	 = R

[
d

dt
(RT σR)

]
RT

= σ̇ + σṘRT − ṘRT σ. (5.61)

Finally, if the antisymmetric tensor ṘRT is approximated by the spin tensor w

(see Equation (4.116)), the resulting objective stress rate is known as Jaumann
stress rate:

σ
 = σ̇ + σw − wσ. (5.62)

Irrespective of the approximations made to arrive at the above definitions of σ	

and σ
, they both remain objective even when these approximations do not apply.
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EXAMPLE 5.7: Objectivity of σ◦

The objectivity of the Truesdell stress rate given by Equation (5.56) can be proved
directly without referring back to the initial configuration. For this purpose recall first
Equations (5.11), (5.53), and (4.137) as

σ̃ = QσQT ;

˙̃σ = Qσ̇QT + Q̇σQT + QσQ̇
T
;

l̃ = Q̇QT + QlQT ;

and note that because J̃ = J then trl = trl̃. With the help of the above equations, the
Truesdell stress rate on a rotated configuration σ̃◦ emerges as

σ̃◦ = ˙̃σ − l̃σ̃ − σ̃l̃
T

+ (trl̃)σ̃

= Qσ̇QT + Q̇σQT + QσQ̇
T − (Q̇QT + QlQT )QσQT

− QσQT (Q̇QT + QlQT ) + (trl)QσQT

= Qσ̇QT − QlσQT − QσlQT + (trl)QσQT

= Qσ◦QT ,

and is therefore objective.

Exercises

1. A two-dimensional Cauchy stress tensor is given as

σ = t ⊗ n1 + α n1 ⊗ n2,

where t is an arbitrary vector and n1 and n2 are orthogonal unit vectors. (a)
Describe graphically the state of stress. (b) Determine the value of α (hint: σ

must be symmetric).
2. Using Equation (5.55) and a process similar to that employed in Example 5.5,

show that, with respect to the initial volume, the stress tensor Π is work
conjugate to the tensor Ḣ, where H = −F −T and Π = PC = JσF .

3. Using the time derivative of the equality CC−1 = I , show that the tensor
Σ = CSC = JF T σF is work conjugate to 1

2Ḃ, where B = −C−1. Find
relationships between T , Σ, and Π.

4. Prove Equation (5.51b) P ′ : F = 0 using a procedure similar to Example 5.6.
5. Prove directly that the Jaumann stress tensor, σ
 is an objective tensor, using

a procedure similar to Example 5.7.
6. Prove that if dx1 and dx2 are two arbitrary elemental vectors moving with the

body (see Figure 4.2) then

d

dt
(dx1 · σdx2) = dx1 · σ
dx2.



C H A P T E R S I X

HYPERELASTICITY

6.1 INTRODUCTION

The equilibrium equations derived in the previous chapter are written in terms
of the stresses inside the body. These stresses result from the deformation of the
material, and it is now necessary to express them in terms of some measure of
this deformation such as, for instance, the strain. These relationships, known as
constitutive equations, obviously depend on the type of material under considera-
tion and may be dependent on or independent of time. For example, the classical
small strain linear elasticity equations involving Young modulus and Poisson ratio
are time-independent, whereas viscous fluids are clearly entirely dependent on
strain rate.

Generally, constitutive equations must satisfy certain physical principles. For
example, the equations must obviously be objective, that is, frame-invariant. In this
chapter the constitutive equations will be established in the context of a hypere-
lastic material, whereby stresses are derived from a stored elastic energy function.
Although there are a number of alternative material descriptions that could be intro-
duced, hyperelasticity is a particularly convenient constitutive equation given its
simplicity and it constitutes the basis for more complex material models such as
elastoplasticity, viscoplasticity, and viscoelasticity.

6.2 HYPERELASTICITY

Materials for which the constitutive behavior is only a function of the current state
of deformation are generally known as elastic. Under such conditions, any stress
measure at a particle X is a function of the current deformation gradient F asso-
ciated with that particle. Instead of using any of the alternative strain measures

155
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given in Chapter 4, the deformation gradient F , together with its conjugate first
Piola–Kirchhoff stress measure P , will be retained in order to define the basic
material relationships. Consequently, elasticity can be generally expressed as

P = P (F (X),X), (6.1)

where the direct dependency upon X allows for the possible inhomogeneity of the
material.

In the special case when the work done by the stresses during a deformation
process is dependent only on the initial state at time t0 and the final configuration at
time t, the behavior of the material is said to be path-independent and the material
is termed hyperelastic. As a consequence of the path-independent behavior and
recalling from Equation (5.33) that P is work conjugate with the rate of defor-
mation gradient Ḟ , a stored strain energy function or elastic potential Ψ per unit
undeformed volume can be established as the work done by the stresses from the
initial to the current position as

Ψ(F (X),X) =
∫ t

t0

P (F (X),X) : Ḟ dt; Ψ̇ = P : Ḟ . (6.2a,b)

Presuming that from physical experiments it is possible to construct the function
Ψ(F ,X), which defines a given material, then the rate of change of the potential
can be alternatively expressed as

Ψ̇ =
3∑

i,J=1

∂Ψ
∂FiJ

ḞiJ . (6.3)

Comparing this with Equation (6.2a,b)b reveals that the components of the two-point
tensor P are

PiJ =
∂Ψ
∂FiJ

. (6.4)

For notational convenience this expression is rewritten in a more compact form as

P (F (X),X) =
∂Ψ(F (X),X)

∂F
. (6.5)

Equation (6.5) followed by Equation (6.2a,b) is often used as a definition of a
hyperelastic material.

The general constitutive Equation (6.5) can be further developed by recalling
the restrictions imposed by objectivity as discussed in Section 4.15. To this end,
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Ψ must remain invariant when the current configuration undergoes a rigid body
rotation. This implies that Ψ depends on F only via the stretch component U and
is independent of the rotation component R. For convenience, however, Ψ is often
expressed as a function of C = U2 = F T F as

Ψ(F (X),X) = Ψ(C(X),X). (6.6)

Observing that 1
2Ċ = Ė is work conjugate to the second Piola–Kirchhoff stress S,

enables a totally Lagrangian constitutive equation to be constructed in the same
manner as Equation (6.5) to give

Ψ̇ =
∂Ψ
∂C

: Ċ =
1
2
S : Ċ; S(C(X),X) = 2

∂Ψ
∂C

=
∂Ψ
∂E

. (6.7a,b)

6.3 ELASTICITY TENSOR

6.3.1 The Material or Lagrangian Elasticity Tensor

The relationship between S and C or E = 1
2(C −I), given by Equation (6.7a,b)b,

will invariably be nonlinear. Within the framework of a potential Newton–Raphson
solution process, this relationship will need to be linearized with respect to an
increment u in the current configuration. Using the chain rule, a linear relationship
between the directional derivative of S and the linearized strain DE[u] can be
obtained, initially in a component form, as

DSIJ [u] =
d

dε

∣∣∣∣
ε=0

SIJ(EKL[φ + εu])

=
3∑

K,L=1

∂SIJ

∂EKL

d

dε

∣∣∣∣
ε=0

EKL[φ + εu]

=
3∑

K,L=1

∂SIJ

∂EKL
DEKL[u]. (6.8)

This relationship between the directional derivatives of S and E is more concisely
expressed as

DS[u] = C : DE[u], (6.9)
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where the symmetric fourth-order tensor C, known as the Lagrangian or material
elasticity tensor, is defined by the partial derivatives as

C =
3∑

I,J,K,L=1

CIJKL EI ⊗ EJ ⊗ EK ⊗ EL;

CIJKL =
∂SIJ

∂EKL
=

4 ∂2Ψ
∂CIJ∂CKL

= CKLIJ . (6.10)

For convenience these expressions are often abbreviated as

C =
∂S

∂E
= 2

∂S

∂C
=

4 ∂2Ψ
∂C∂C

. (6.11)

EXAMPLE 6.1: St. Venant–Kirchhoff Material

The simplest example of a hyperelastic material is the St. Venant–Kirchhoff model,
which is defined by a strain energy function Ψ as

Ψ(E) =
1
2
λ(trE)2 + μE : E,

where λ and μ are material coefficients. Using the second part of Equation (6.7a,b)b,
we can obtain the second Piola–Kirchhoff stress tensor as

S = λ(trE)I + 2μE,

and using Equation (6.10), the coefficients of the Lagrangian elasticity tensor
emerge as

CIJKL = λδIJδKL + μ (δIKδJL + δILδJK).

Note that these two last equations are analogous to those used in linear elasticity,
where the small strain tensor has been replaced by the Green strain. Unfortunately,
this St. Venant–Kirchhoff material has been found to be of little practical use beyond
the small strain regime.

6.3.2 The Spatial or Eulerian Elasticity Tensor

It would now be pertinent to attempt to find a spatial equivalent to Equation (6.9),
and it would be tempting to suppose that this would involve a relationship
between the linearized Cauchy stress and the linearized Almansi strain. Although,
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in principle, this can be achieved, the resulting expression is intractable. An eas-
ier route is to interpret Equation (6.9) in a rate form and apply the push forward
operation to the resulting equation. This is achieved by linearizing S and E in the
direction of v, rather than u. Recalling from Section 4.11.3 that DS[v] = Ṡ and
DE[v] = Ė gives

Ṡ = C : Ė. (6.12)

Because the push forward of Ṡ has been shown in Section 5.5 to be the Truesdell
rate of the Kirchhoff stress τ◦ = Jσ◦ and the push forward of Ė is d, namely, Equa-
tion (4.100a,b)a, it is now possible to obtain the spatial equivalent of the material
linearized constitutive Equation (6.12) as

σ◦ =c : d, (6.13)

where c , the Eulerian or spatial elasticity tensor, is defined as the Piola push
forward of C and after some careful indicial manipulations can be obtained as*

c = J−1φ∗[C]; c =
3∑

i,j,k,l=1
I,J,K,L=1

J−1FiIFjJFkKFlL CIJKL ei ⊗ ej ⊗ ek ⊗ el.

(6.14)

Often, Equation (6.13) is used, together with convenient coefficients inc , as the
fundamental constitutive equation that defines the material behavior. Use of such
an approach will, in general, not guarantee hyperelastic behavior, and therefore the
stresses cannot be obtained directly from an elastic potential. In such cases, the rate
equation has to be integrated in time, and this can cause substantial difficulties in a
finite element analysis because of problems associated with objectivity over a finite
time increment.

Remark 6.1: Using Equations (4.105) and (5.57), it can be observed that
Equation (6.13) can be reinterpreted in terms of Lie derivatives as,

Lφ[τ ] = Jc : Lφ[e]. (6.15)

* Using the standard summation convention and noting from Equation (5.54) that σ◦
ij = J−1FiIFjJ ṠIJ and

from Equation (4.100a,b)b that ĖKL = FkKFlLdkl gives

σ◦
ij = J−1τ◦

ij = J−1FiIFjJCIJKLFkKFlLdkl = c ijkldkl,

and, consequently, c ijkl = J−1FiIFjJFkKFlLCIJKL.
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6.4 ISOTROPIC HYPERELASTICITY

6.4.1 Material Description

The hyperelastic constitutive equations discussed so far are unrestricted in their
application. We are now going to restrict these equations to the common and impor-
tant isotropic case. Isotropy is defined by requiring the constitutive behavior to be
identical in any material direction.† This implies that the relationship between Ψ
and C must be independent of the material axes chosen and, consequently, Ψ must
only be a function of the invariants of C as

Ψ(C(X),X) = Ψ(IC ,IIC , IIIC ,X), (6.16)

where the invariants of C are defined here as

IC = trC = C : I (6.17a)

IIC = trCC = C : C (6.17b)

IIIC = detC = J2 (6.17c)

As a result of the isotropic restriction, the second Piola–Kirchhoff stress tensor
can be rewritten from Equation (6.7a,b)b as

S = 2
∂Ψ
∂C

= 2
∂Ψ
∂IC

∂IC

∂C
+ 2

∂Ψ
∂IIC

∂IIC

∂C
+ 2

∂Ψ
∂IIIC

∂IIIC
∂C

(6.18)

The second-order tensors formed by the derivatives of the first two invariants with
respect to C can be evaluated in component form to give

∂

∂CIJ

3∑
K=1

CKK = δIJ ;
∂IC

∂C
= I ; (6.19a)

∂

∂CIJ

3∑
K,L=1

CKLCKL = 2CIJ ;
∂IIC

∂C
= 2C. (6.19b)

The derivative of the third invariant is more conveniently evaluated using the expres-
sion for the linearization of the determinant of a tensor given in Equation (2.119).
To this end note that the directional derivative with respect to an arbitrary increment
tensor ΔC and the partial derivatives are related via

DIIIC [ΔC] =
3∑

I,J=1

∂IIIC
∂CIJ

ΔCIJ =
∂IIIC
∂C

: ΔC. (6.20)

† Note that the resulting spatial behavior as given by the spatial elasticity tensor may be anisotropic.
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Rewriting Equation (2.119) as

DIIIC [ΔC] = detC (C−1 : ΔC) (6.21)

and comparing this equation with Expression (6.20) and noting that both equations
are valid for any increment ΔC yields

∂IIIC
∂C

= J2C−1. (6.22)

Introducing Expressions (6.19a,b) and (6.22) into Equation (6.18) enables the
second Piola–Kirchhoff stress to be evaluated as

S = 2ΨII + 4ΨIIC + 2J2ΨIIIC
−1, (6.23)

where ΨI = ∂Ψ/∂IC , ΨII = ∂Ψ/∂IIC , and ΨIII = ∂Ψ/∂IIIC .

6.4.2 Spatial Description

In design practice, it is obviously the Cauchy stresses that are of engineering signif-
icance. These can be obtained indirectly from the second Piola–Kirchhoff stresses
by using Equation (5.45a,b)b as

σ = J−1FSF T . (6.24)

Substituting S from Equation (6.23) and noting that the left Cauchy–Green tensor
is b = FF T gives

σ = 2J−1ΨIb + 4J−1ΨIIb
2 + 2JΨIIII . (6.25)

In this equation ΨI , ΨII , and ΨIII still involve derivatives with respect to the invari-
ants of the material tensor C. Nevertheless, it is easy to show that the invariants of
b are identical to the invariants of C, as the following expressions demonstrate:

Ib = tr[b] = tr[FF T ] = tr[F T F ] = tr[C] = IC ; (6.26a)

IIb = tr[bb] = tr[FF T FF T ] = tr[F T FF T F ] = tr[CC] = IIC ; (6.26b)

IIIb = det[b] = det[FF T ] = det[F T F ] = det[C] = IIIC . (6.26c)

Consequently, the terms ΨI , ΨII , and ΨIII in Equation (6.25) are also the derivatives
of Ψ with respect to the invariants of b.

Remark 6.2: Note that any spatially based expression for Ψ must be a func-
tion of b only via its invariants, which implies an isotropic material. This
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follows from the condition that Ψ must remain constant under rigid body
rotations and only the invariants of b, not b itself, remain unchanged under
such rotations.

EXAMPLE 6.2: Cauchy stresses

It is possible to derive an alternative equation for the Cauchy stresses directly from
the strain energy. For this purpose, note first that the time derivative of b is

ḃ = ḞF T + FḞ
T

= lb + blT ,

and therefore the internal energy rate per unit of undeformed volume ẇ0 = Ψ̇ is

Ψ̇ =
∂Ψ
∂b

: ḃ

=
∂Ψ
∂b

: (lb + blT )

= 2
∂Ψ
∂b

b : l.

Combining this equation with the fact that σ is work conjugate to l with respect to
the current volume, that is, ẇ = J−1ẇ0 = σ : l, gives

Jσ = 2
∂Ψ
∂b

b.

It is simple to show that this equation gives the same result as Equation (6.25) for
isotropic materials where Ψ is a function of the invariants of b.

6.4.3 Compressible Neo-Hookean Material

The equations derived in the previous sections refer to a general isotropic hyperelas-
tic material. We can now focus on a particularly simple case known as compressible
neo-Hookean material. This material exhibits characteristics that can be identified
with the familiar material parameters found in linear elastic analysis. The stored
energy function of such a material is defined as

Ψ =
μ

2
(IC − 3) − μ ln J +

λ

2
(ln J)2, (6.27)

where the constants λ and μ are material coefficients and J2 = IIIC . Note that
in the absence of deformation, that is, when C = I , the stored energy function
vanishes as expected.
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The second Piola–Kirchhoff stress tensor can now be obtained from Equa-
tion (6.23) as

S = μ(I − C−1) + λ(ln J)C−1. (6.28)

Alternatively, the Cauchy stresses can be obtained using Equation (6.25) in terms
of the left Cauchy–Green tensor b as

σ =
μ

J
(b − I) +

λ

J
(ln J)I . (6.29)

The Lagrangian elasticity tensor corresponding to this neo-Hookean material
can be obtained by differentiation of Equation (6.28) with respect to the components
of C to give, after some algebra using Equation (6.22), C as

C = λC−1 ⊗ C−1 + 2(μ − λ ln J)I, (6.30)

where C−1 ⊗ C−1 =
∑

(C−1)IJ(C−1)KL EI ⊗ EJ ⊗ EK ⊗ EL and the
fourth-order tensor I is defined as

I = −∂C−1

∂C
; IIJKL = −∂(C−1)IJ

∂CKL
. (6.31)

In order to obtain the coefficients of this tensor, recall from Section 2.3.4 that
the directional derivative of the inverse of a tensor in the direction of an arbitrary
increment ΔC is

DC−1[ΔC] = −C−1(ΔC)C−1. (6.32)

Alternatively, this directional derivative can be expressed in terms of the partial
derivatives as

DC−1[ΔC] =
∂C−1

∂C
: ΔC. (6.33)

Equating the right-hand sides of the last two equations using indicial notation gives

−∂(C−1)IJ

∂CKL
ΔCKL =

(
C−1)

IK
ΔCKL

(
C−1)

LJ
. (6.34)

By employing the symmetry of both ΔC and C−1 this equation can be rewritten as

−∂(C−1)IJ

∂CKL
ΔCKL =

(
C−1)

IL
ΔCKL

(
C−1)

KJ
. (6.35)
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Consequently, the components of the tensor I can now be identified by averaging
Equations (6.34) and (6.35) to give

IIJKL =
1
2
[(

C−1)
IK

(
C−1)

JL
+
(
C−1)

IL

(
C−1)

JK

]
. (6.36)

By constructing the above tensor in the manner described above it is easy to show
that I and therefore the material elasticity tensor C (in Equation (6.30)) satisfy the
full set of symmetries:

IIJKL = IKLIJ = IJIKL = IIJLK ; (6.37a)

CIJKL = CKLIJ = CJIKL = CIJLK . (6.37b)

The Eulerian or spatial elasticity tensor can now be obtained by pushing forward
the Lagrangian tensor using Equation (6.14) to give, after tedious algebra,c as,

c =
λ

J
I ⊗ I +

2
J

(μ − λ ln J)i , (6.38)

where i is the fourth-order identity tensor obtained by pushing forward I and in
component form is given in terms of the Kroneker delta as

i = φ∗[I ]; i ijkl =
∑

I,J,K,L

FiIFjJFkKFlLIIJKL =
1
2
(
δikδjl + δilδjk

)
.

(6.39)

Note that Equation (6.39) defines an isotropic fourth-order tensor as discussed
in Section 2.2.4, similar to that used in linear elasticity, which can be expressed in
terms of the effective Lamé moduli λ′ and μ′ as

c ijkl = λ′δijδkl + μ′ (δikδjl + δilδjk

)
, (6.40)

where the effective coefficients λ′ and μ′ are

λ′ =
λ

J
; μ′ =

μ − λ ln J

J
. (6.41)

Note that in the case of small strains when J ≈ 1, then λ′ ≈ λ, μ′ ≈ μ, and the
standard fourth-order tensor used in linear elastic analysis is recovered. Finally, in
a similar manner to Equation (6.37)b the spatial elasticity c satisfies the full set of
symmetries:

c ijkl = c klij = c jikl = c ijlk. (6.42)
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The recognition of these symmetries will facilitate the numerical implementation
of the linearization of the equilibrium equations.

EXAMPLE 6.3: Pure dilatation (i)

The simplest possible deformation is a pure dilatation case where the deformation
gradient tensor F is

F = λI ; J = λ3;

and the left Cauchy–Green tensor b is therefore

b = λ2I = J2/3I .

Under such conditions the Cauchy stress tensor for a compressible neo-Hookean
material is evaluated with the help of Equation (6.29) as

σ =
[

μ

J
(J2/3 − 1) +

λ

J
lnJ

]
I ,

which represents a state of hydrostatic stress with pressure p equal to

p =
μ

J
(J2/3 − 1) +

λ

J
lnJ.

EXAMPLE 6.4: Simple shear (i)

The case of simple shear described in Chapter 4 is defined by a deformation gradient
and left Cauchy–Green tensors as

F =

⎡⎣1 γ 0
0 1 0
0 0 1

⎤⎦ ; b =

⎡⎣ 1 + γ2 γ 0
γ 1 0
0 0 1

⎤⎦ ,

which imply J = 1 and the Cauchy stresses for a neo-Hookean material are

σ = μ

⎡⎣γ2 γ 0
γ 0 0
0 0 0

⎤⎦ .

Note that only when γ → 0 a state of pure shear is obtained. Note also that despite the
fact that J = 1, that is, there is no change in volume, the pressure p = trσ/3 = γ2/3
is not zero. This is known as the Kelvin effect.
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6.5 INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE

MATERIALS

Most practical large strain processes take place under incompressible or near incom-
pressible conditions. Hence, it is pertinent to discuss the constitutive implications
of this constraint on the deformation. The terminology “near incompressibility”
is used here to denote materials that are truly incompressible, but their numerical
treatment invokes a small measure of volumetric deformation. Alternatively, in a
large strain elastoplastic or inelastic context, the plastic deformation is often truly
incompressible and the elastic volumetric strain is comparatively small.

6.5.1 Incompressible Elasticity

In order to determine the constitutive equation for an incompressible hyperelastic
material, recall Equation (6.7a,b)a rearranged as

(
1
2
S − ∂Ψ

∂C

)
: Ċ = 0. (6.43)

Previously the fact that Ċ in this equation was arbitrary implied that S = 2∂Ψ/∂C.
In the incompressible case, the term in brackets is not guaranteed to vanish because
Ċ is no longer arbitrary. In fact, given that J = 1 throughout the deformation and
therefore J̇ = 0, Equation (4.129) gives the required constraint on Ċ as

1
2JC−1 : Ċ = 0. (6.44)

The fact that Equation (6.43) has to be satisfied for any Ċ that complies with
condition (6.44) implies that

1
2
S − ∂Ψ

∂C
= γ

J

2
C−1, (6.45)

where γ is an unknown scalar that will, under certain circumstances that we will
discuss later, coincide with the hydrostatic pressure and will be determined by
using the additional equation given by the incompressibility constraint J = 1.
Equation (6.44) is symbolically illustrated in Figure 6.1, where the double con-
traction “ : ” has been interpreted as a generalized dot product. This enables
(S/2 − ∂Ψ/∂C) and JC−1/2 to be seen as being orthogonal to any admissible
Ċ and therefore proportional to each other.
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FIGURE 6.1 Incompressibility constraint.

From Equation (6.45) the general incompressible hyperelastic constitutive
equation emerges as

S = 2
∂Ψ(C)

∂C
+ γJC−1. (6.46)

The determinant J in the above equation may seem unnecessary in the case
of incompressibility where J = 1, but retaining J has the advantage that Equa-
tion (6.46) is also applicable in the nearly incompressible case. Furthermore, in
practical terms, a finite element analysis rarely enforces J = 1 in a strict point-
wise manner, and hence its retention may be important for the evaluation of
stresses.

Recalling Equation (6.54)b giving the deviatoric–hydrostatic decomposition of
the second Piola–Kirchhoff tensor as S = S′ + pJC−1, it would be convenient
to identify the parameter γ with the pressure p. With this in mind, a relationship
between p and γ can be established to give

p =
1
3
J−1S : C

=
1
3
J−1
[
2
∂Ψ
∂C

+ γJC−1
]

: C

= γ +
2
3
J−1 ∂Ψ

∂C
: C, (6.47)

which clearly indicates that γ and p coincide only if

∂Ψ
∂C

: C = 0. (6.48)
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This implies that the function Ψ(C) must be homogeneous of order 0, that is,
Ψ(αC) = Ψ(C) for any arbitrary constant α.* This can be achieved by recognizing
that for incompressible materials IIIC = detC = J2 = 1. We can therefore
express the energy function Ψ in terms of the distortional component of the right
Cauchy–Green tensor Ĉ = III−1/3

C C to give a formally modified (distortional)
energy function Ψ̂(C) = Ψ(Ĉ). The homogeneous properties of the resulting
function Ψ̂(C) are easily shown by

Ψ̂(αC) = Ψ[(detαC)−1/3(αC)]

= Ψ[(α3 det C)−1/3αC]

= Ψ[(detC)−1/3C]

= Ψ̂(C). (6.49)

Accepting that for the case of incompressible materials Ψ can be replaced by Ψ̂,
Condition (6.48) is satisfied and Equation (6.46) becomes

S = 2
∂Ψ̂(C)

∂C
+ pJC−1. (6.50)

It is now a trivial matter to identify the deviatoric component of the second
Piola–Kirchhoff tensor by comparison of the above equation with Equation (6.54)b
to give

S′ = 2
∂Ψ̂
∂C

. (6.51)

Note that the derivative ∂Ψ̂(C)/∂C is not equal to the derivative ∂Ψ(C)/∂C,
despite the fact that Ĉ = C for incompressibility. This is because IIIC remains
a function of C while the derivative of Ĉ is being executed. It is only after the
derivative has been completed that the substitution IIIC = 1 can be made.

* A scalar function f(x) of a k-dimensional vector variable x = [x1, x2, . . . , xk]T is said to be homogeneous
of order n if for any arbitrary constant α,

f(αx) = αnf(x).

Differentiating this expression with respect to α at α = 1 gives

∂f

∂x
· x = nf(x)
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6.5.2 Incompressible Neo-Hookean Material

In the case of incompressibility the neo-Hookean material introduced in Sec-
tion 6.4.3 is defined by a hyperelastic potential Ψ(C) given as

Ψ(C) =
1
2
μ(trC − 3). (6.52)

The equivalent homogeneous (distortional) potential Ψ̂ is established by replacing
C by Ĉ to give

Ψ̂(C) =
1
2
μ(trĈ − 3). (6.53)

Now using Equation (6.50) S is obtained with the help of Equations (6.19a) and
(6.20) as

S = 2
∂Ψ̂(C)

∂C
+ pJC−1

= μ
∂trĈ
∂C

+ pJC−1

= μ
∂

∂C
(III−1/3

C C : I) + pJC−1

= μ[III−1/3
C I − 1

3 III−1/3−1
C IIICC−1(C : I)] + pJC−1

= μIII−1/3
C (I − 1

3ICC−1) + pJC−1. (6.54)

The corresponding Cauchy stress tensor can now be obtained by using Equa-
tion (5.45a,b)b to give σ as

σ = J−1FSF T

= μJ−5/3F (I − 1
3ICC−1)F T + pFC−1F T

= σ′ + pI ; σ′ = μJ−5/3(b − 1
3IbI), (6.55)

where the fact that Ib = IC has been used again.
We can now evaluate the Lagrangian elasticity tensor with the help of Equations

(6.10) or (6.11). The result can be split into deviatoric and pressure components, Ĉ
and Cp respectively, as

C = 2
∂S

∂C
= Ĉ + Cp; Ĉ = 2

∂S′

∂C
= 4

∂2Ψ̂
∂C∂C

; Cp = 2p
∂(JC−1)

∂C
. (6.56)
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With the help of Equations (6.22) and (6.31) these two components can be evalu-
ated for the neo-Hookean case defined by Equation (6.53) after lengthy but simple
algebra as

Ĉ = 2μIII−1/3
C

[1
3ICI − 1

3I ⊗ C−1 − 1
3C−1 ⊗ I + 1

9ICC−1 ⊗ C−1];
(6.57a)

Cp = pJ [C−1 ⊗ C−1 − 2I ]. (6.57b)

Note that the pressure component Cp does not depend on the particular material
definition being used.

The spatial elasticity tensor is obtained by the push forward type of operation
shown in Equation (6.14) as

c =ĉ +c p; ĉ = J−1φ∗[Ĉ]; c p = J−1φ∗[Cp]. (6.58)

Performing this push-forward operation in Equations (6.57a,b) gives

ĉ = 2μJ−5/3[1
3Ibi − 1

3b ⊗ I − 1
3I ⊗ b + 1

9IbI ⊗ I
]
; (6.59a)

c p = p[I ⊗ I − 2i ]. (6.59b)

EXAMPLE 6.5: Mooney–Rivlin materials

A general form for the strain energy function of incompressible rubbers attributable
to Mooney and Rivlin is expressed as, index Mooney–Rivlin materials,

Ψ(C) =
∑

r,s≥0

μrs(IC − 3)r(II∗
C − 3)s,

where II∗
C is the second invariant of C defined as

II∗
C = 1

2 (I2
C −IIC); IIC = C : C.

The most frequently used of this family of equations is obtained when only μ01 and
μ10 are different from zero. In this particular case we have

Ψ(C) = μ10(IC − 3) + 1
2μ01(I2

C −IIC − 6).

The equivalent homogeneous potential is obtained by replacing C by Ĉ in this
equation to give

Ψ̂(C) = μ10(trĈ − 3) + 1
2μ01[(trĈ)2 − Ĉ : Ĉ − 6].
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6.5.3 Nearly Incompressible Hyperelastic Materials

As explained at the beginning of Section 6.5, near incompressibility is often a
device by which incompressibility can more readily be enforced within the context
of the finite element formulation. This is facilitated by adding a volumetric energy
component U(J) to the distortional component Ψ̂ already defined to give the total
strain energy function Ψ(C) as

Ψ(C) = Ψ̂(C) + U(J), (6.60)

where the simplest example of a volumetric function U(J) is

U(J) = 1
2κ(J − 1)2. (6.61)

It will be seen in Chapter 8 that when equilibrium is expressed in a variational
framework, the use of Equation (6.61) with a large so-called penalty number κ

will approximately enforce incompressibility. Typically, values of κ in the region
of 103 − 104 μ are used for this purpose. Nevertheless, we must emphasize that κ

can represent a true material property, namely the bulk modulus, for a compressible
material that happens to have a hyperelastic strain energy function in the form given
by Equations (6.60) and (6.61).

The second Piola–Kirchhoff tensor for a material defined by Equation (6.60)
is obtained in the standard manner with the help of Equation (6.22) and noting that
IIIC = J2 to give

S = 2
∂Ψ
∂C

= 2
∂Ψ̂
∂C

+ 2
dU

dJ

∂J

∂C

= 2
∂Ψ̂
∂C

+ pJC−1, (6.62)

where, by comparison with Equation (6.50), we have identified the pressure as

p =
dU

dJ
, (6.63)

which for the case where U(J) is given by Equation (6.61) gives

p = k(J − 1). (6.64)
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This value of the pressure can be substituted into the generalEquation (6.62) or
into the particular Equation (6.54) for the neo-Hookean case to yield the complete
second Piola–Kirchhoff tensor. Alternatively, in the neo-Hookean case, p can be
substituted into Equation (6.55) to give the Cauchy stress tensor.

EXAMPLE 6.6: Simple shear (ii)

Again we can study the case of simple shear for a nearly incompressible neo-Hookean
material. Using Equation (6.55) and the b tensor given in Example 6.4 we obtain

σ = μ

⎡⎢⎣
2
3γ2 γ 0
γ −1

3γ2 0
0 0 − 1

3γ2

⎤⎥⎦ ,

where now the pressure is zero as J = 1 for this type of deformation. Note that for
this type of material there is no Kelvin effect in the sense that a volume-preserving
motion leads to a purely deviatoric stress tensor.

EXAMPLE 6.7: Pure dilatation (ii)

It is also useful to examine the consequences of a pure dilatation on a nearly incom-
pressible material. Recalling that this type of deformation has an associated left
Cauchy–Green tensor b = J2/3I whose trace is Ib = 3J2/3, Equations (6.55) and
(6.64) give

σ = κ(J − 1)I .

As expected, a purely dilatational deformation leads to a hydrostatic state of stresses.
Note also that the isochoric potential Ψ̂ plays no role in the value of the pressure p.

Again, to complete the description of this type of material it is necessary to
derive the Lagrangian and spatial elasticity tensors. The Lagrangian tensor can be
split into three components given as

C = 4
∂Ψ̂

∂C∂C
+ 2p

∂(JC−1)
∂C

+ 2JC−1 ⊗ ∂p

∂C
. (6.65)

The first two components in this expression are Ĉ and Cp as evaluated in the previous
section in Equations (6.57a,b). The final term, namely Cκ, represents a volumetric
tangent component and follows from U(J) and Equation (6.22) as
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Cκ = 2JC−1 ⊗ ∂p

∂C

= 2JC−1 ⊗ d2U

dJ2
∂J

∂C

= J2 d2U

dJ2

(
C−1 ⊗ C−1) , (6.66)

which in the case U(J) = κ(J − 1)2/2 becomes

Cκ = κJ2 C−1 ⊗ C−1. (6.67)

Finally, the spatial elasticity tensor is obtained by standard push-forward oper-
ation to yield

c = J−1φ∗[C] = ĉ + c p +cκ, (6.68)

where the deviatoric and pressure components,ĉ andc p respectively, are identical
to those derived in the previous section and the volumetric componentcκ is

cκ = J−1φ∗[Cκ] = J
d2U

dJ2 I ⊗ I , (6.69)

which for the particular function U(J) defined in Equation (6.61) gives

cκ = κJ I ⊗ I . (6.70)

Remark 6.3: At the initial configuration, F = C = b = I , J = 1, p = 0,
and the above elasticity tensor becomes

c = ĉ +cκ

= 2μ
[
i − 1

3I ⊗ I
]
+ κI ⊗ I

=
(
κ − 2

3μ
)
I ⊗ I + 2μi , (6.71)

which coincides with the standard spatially isotropic elasticity tensor (6.40)
with the relationship between λ and κ given as

λ = κ − 2
3μ. (6.72)

In fact, all isotropic hyperelastic materials have initial elasticity tensors as
defined by Equation (6.40).
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6.6 ISOTROPIC ELASTICITY IN PRINCIPAL DIRECTIONS

6.6.1 Material Description

It is often the case that the constitutive equations of a material are presented in terms
of the stretches λ1, λ2, λ3 in the principal directions N1, N2, and N3 as defined in
Section 4.6. In the case of hyperelasticity, this assumes that the stored elastic energy
function is obtainable in terms of λα rather than the invariants of C. This is most
likely to be the case in the experimental determination of the constitutive parameters.

In order to obtain the second Piola–Kirchhoff stress in terms of the principal
directions and stretches, recall Equation (6.23) and note that the identity, the right
Cauchy–Green tensor, and its inverse can be expressed as (see Equations (2.30a,b)b
and (4.30))

I =
3∑

α=1

Nα ⊗ Nα; (6.73a)

C =
3∑

α=1

λ2
α Nα ⊗ Nα; (6.73b)

C−1 =
3∑

α=1

λ−2
α Nα ⊗ Nα. (6.73c)

Substituting these equations into Equation (6.23) gives the second Piola–Kirchhoff
stress, S, as

S =
3∑

α=1

(2ΨI + 4ΨIIλ
2
α + 2IIICΨIIIλ

−2
α )Nα ⊗ Nα. (6.74)

Given that the term in brackets is a scalar, it is immediately apparent that for an
isotropic material the principal axes of stress coincide with the principal axes of
strain. The terms ΨI , ΨII , and ΨIII in Equation (6.74) refer to the derivatives with
respect to the invariants of C. Hence it is necessary to transform these into deriva-
tives with respect to the stretches. For thispurpose note that the squared stretches
λ2

α are the eigenvalues of C, which according to the general relationships (2.60a–c)
are related to the invariants of C as

IC = λ2
1 + λ2

2 + λ2
3; (6.75a)

IIC = λ4
1 + λ4

2 + λ4
3; (6.75b)

IIIC = λ2
1 λ2

2 λ2
3. (6.75c)
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Differentiating these equations gives

1 =
∂IC

∂λ2
α

; (6.76a)

2λ2
α =

∂IIC

∂λ2
α

; (6.76b)

IIIC

λ2
α

=
∂IIIC

∂λ2
α

; (6.76c)

which upon substitution into Equation (6.74) and using the chain rule gives the
principal components of the second Piola–Kirchhoff tensor as derivatives of Ψ
with respect to the principal stretches as

S =
3∑

α=1

Sαα Nα ⊗ Nα; Sαα = 2
∂Ψ
∂λ2

α

. (6.77)

6.6.2 Spatial Description

In order to obtain an equation analogous to (6.77) for the Cauchy stress, substitute
this equation into Equation (5.45a,b)b to give

σ = J−1FSF T =
3∑

α=1

2
J

∂Ψ
∂λ2

α

(FNα) ⊗ (FNα). (6.78)

Observing from Equation (4.44a) that FNα = λαnα yields the principal compo-
nents of Cauchy stress tensor after simple algebra as

σ =
3∑

α=1

σαα nα ⊗ nα; σαα =
λα

J

∂Ψ
∂λα

=
1
J

∂Ψ
∂ ln λα

. (6.79)

The evaluation of the Cartesian components of the Cauchy stress can be easily
achieved by interpreting Equation (6.79) in a matrix form using Equation (2.40)d
for the components of the tensor product to give

[σ] =
3∑

α=1

σαα[nα][nα]T , (6.80)



176 H Y P E R E L A S T I C I T Y

where [σ] denotes the matrix formed by the Cartesian components of σ and [nα]
are the column vectors containing the Cartesian components of nα. Alternatively,
a similar evaluation can be performed in an indicial manner by introducing Tαj as
the Cartesian components of nα, that is, nα =

∑3
j=1 Tαjej , and substituting into

Equation (6.79) to give

σ =
3∑

j,k=1

(
3∑

α=1

σααTαjTαk

)
ej ⊗ ek. (6.81)

The expression in brackets in the above equation gives again the Cartesian compo-
nents of the Cauchy stress tensor.

6.6.3 Material Elasticity Tensor

To construct the material elasticity tensor for a material given in terms of the prin-
cipal stretches it is again temporarily convenient to consider the time derivative
Equation (6.12), that is, Ṡ = C : Ė. From Equation (4.123), it transpires that Ė

can be written in principal directions as,

Ė =
3∑

α=1

1
2

dλ2
α

dt
Nα ⊗ Nα +

3∑
α,β=1
α�=β

1
2
Wαβ

(
λ2

α − λ2
β

)
Nα ⊗ Nβ, (6.82)

where Wαβ are the components of the spin tensor of the Lagrangian triad, that is,
Ṅα =

∑3
β=1 Wαβ Nβ . A similar expression for the time derivative of S can be

obtained by differentiating Equation (6.77) to give

Ṡ =
3∑

α,β=1

2
∂2Ψ

∂λ2
α∂λ2

β

dλ2
β

dt
Nα ⊗ Nα

+
3∑

α=1

2
∂Ψ
∂λ2

α

(Ṅα ⊗ Nα + Nα ⊗ Ṅα)

=
3∑

α,β=1

2
∂2Ψ

∂λ2
α∂λ2

β

dλ2
β

dt
Nα ⊗ Nα

+
3∑

α,β=1
α�=β

(Sαα − Sββ)Wαβ Nα ⊗ Nβ. (6.83)
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Now, observe from Equation (6.82) that the on-diagonal and off-diagonal terms of
Ė are,

dλ2
α

dt
= 2Ėαα; (6.84a)

Wαβ =
2Ėαβ

λ2
α − λ2

β

=
Ėαβ + Ėβα

λ2
α − λ2

β

; (α �= β). (6.84b)

Substituting Equations (6.84a–b) into (6.83) and expressing the components of Ė

as Ėαβ = (Nα ⊗ Nβ) : Ė yields

Ṡ =
3∑

α=1

4
∂2Ψ

∂λ2
α∂λ2

β

Ėββ(Nα ⊗ Nα)

+
3∑

α,β=1
α�=β

Sαα − Sββ

λ2
α − λ2

β

(
Ėαβ + Ėβα

)
Nα ⊗ Nβ

=
[ 3∑

α,β=1

4
∂2Ψ

∂λ2
α∂λ2

β

N ααββ

+
3∑

α,β=1
α�=β

Sαα − Sββ

λ2
α − λ2

β

(
N αβαβ + N αββα

) ]
: Ė; (6.85a)

N ααββ = Nα ⊗ Nα ⊗ Nβ ⊗ Nβ ; (6.85b)

N αβαβ = Nα ⊗ Nβ ⊗ Nα ⊗ Nβ ; (6.85c)

N αββα = Nα ⊗ Nβ ⊗ Nβ ⊗ Nα. (6.85d)

Comparing this expression with the rate equation Ṡ = C : Ė, the material or
Lagrangian elasticity tensor emerges as

C =
3∑

α,β=1

4
∂2Ψ

∂λ2
α∂λ2

β

N ααββ +
3∑

α,β=1
α�=β

Sαα − Sββ

λ2
α − λ2

β

(
N αβαβ + N αββα

)
.

(6.86)
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Remark 6.4: In the particular case when λα = λβ isotropy implies that
Sαα = Sββ , and the quotient (Sαα − Sββ)(λ2

α − λ2
β) in Equation (6.86) must

be evaluated using L’Hospital’s rule to give

lim
λβ→λα

Sαα − Sββ

λ2
α − λ2

β

= 2

(
∂2Ψ

∂λ2
β∂λ2

β

− ∂2Ψ
∂λ2

α∂λ2
β

)
. (6.87)

6.6.4 Spatial Elasticity Tensor

The spatial elasticity tensor is obtained by pushing the Lagrangian tensor forward
to the current configuration using Equation (6.14), which involves the product by
F four times as

c =
3∑

α,β=1

1
J

∂2Ψ
∂λ2

α∂λ2
β

φ∗
[
N ααββ

]

+
3∑

α,β=1
α�=β

1
J

Sαα − Sββ

λ2
α − λ2

β

(
φ∗
[
N αβαβ

]
+ φ∗

[
N αββα

])
; (6.88a)

φ∗
[
N ααββ

]
= (FNα) ⊗ (FNα) ⊗ (FNβ) ⊗ (FNβ); (6.88b)

φ∗
[
N αβαβ

]
= (FNα) ⊗ (FNβ) ⊗ (FNα) ⊗ (FNβ); (6.88c)

φ∗
[
N αββα

]
= (FNα) ⊗ (FNβ) ⊗ (FNβ) ⊗ (FNα). (6.88d)

Noting again that FNα = λαnα and after some algebraic manipulations using
the standard chain rule we can eventually derive the Eulerian or spatial elasticity
tensor as

c =
3∑

α,β=1

1
J

∂2Ψ
∂ ln λα∂ ln λβ

ηααββ −
3∑

α=1

2σααηαααα

+
3∑

α,β=1
α�=β

σααλ2
β − σββλ2

α

λ2
α − λ2

β

(
ηαβαβ + ηαββα

)
; (6.89a)

ηααββ = nα ⊗ nα ⊗ nβ ⊗ nβ ; (6.89b)

ηαααα = nα ⊗ nα ⊗ nα ⊗ nα; (6.89c)

ηαβαβ = nα ⊗ nβ ⊗ nα ⊗ nβ ; (6.89d)

ηαββα = nα ⊗ nβ ⊗ nβ ⊗ nα. (6.89e)
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The evaluation of the Cartesian components of this tensor requires a similar
transformation to that employed in Equation (6.81) for the Cauchy stresses. Using
the same notation, the Cartesian components of the Eulerian triad Tαj are substi-
tuted into Equation (6.89) to give after simple algebra the Cartesian components
ofc as

c ijkl =
3∑

α,β=1

1
J

∂2Ψ
∂ ln λα∂ ln λβ

TαiTαjTβkTβl −
3∑

α=1

2σααTαiTαjTαkTαl

+
3∑

α,β=1
α�=β

σααλ2
β − σββλ2

α

λ2
α − λ2

β

(
TαiTβjTαkTβl + TαiTβjTβkTαl

)
. (6.90)

Remark 6.5: Again, recalling Remark 6.4, in the case when λα = λβ ,
L’Hospital’s rule yields

lim
λβ→λα

σααλ2
β −σββλ2

α

λ2
α −λ2

β

=
1
2J

[
∂2Ψ

∂ ln λβ∂ ln λβ
− ∂2Ψ

∂ ln λα∂ ln λβ

]
−σββ .

(6.91)

6.6.5 A Simple Stretch-based Hyperelastic Material

A material frequently encountered in the literature is defined by a hyperelastic
potential in terms of the logarithmic stretches and two material parameters λ

and μ as

Ψ(λ1, λ2, λ3) = μ[(ln λ1)2 + (ln λ2)2 + (ln λ3)2] +
λ

2
(ln J)2, (6.92)

where, because J = λ1λ2λ3,

ln J = ln λ1 + ln λ2 + ln λ3. (6.93)

It will be shown that the potential Ψ leads to a generalization of the stress–strain
relationships employed in classical linear elasticity.

Using Equation (6.79) the principal Cauchy stress components emerge as

σαα =
1
J

∂Ψ
∂ ln λα

=
2μ

J
ln λα +

λ

J
ln J. (6.94)
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Furthermore, the coefficients of the elasticity tensor in (6.90) are

1
J

∂2Ψ
∂ ln λα∂ ln λβ

=
λ

J
+

2μ

J
δαβ . (6.95)

The similarities between these equations and linear elasticity can be established
if we first recall the standard small strain elastic equations as

σαα = λ(ε11 + ε22 + ε33) + 2μεαα. (6.96)

Recalling that ln J = ln λ1 + ln λ2 + ln λ3, it transpires that Equations (6.94)
and (6.96) are identical except for the small strains having been replaced by the
logarithmic stretches and λ and μ by λ/J and μ/J respectively. The stress–strain
equations can be inverted and expressed in terms of the more familiar material
parameters E and ν, the Young’s modulus and Poisson ratio, as

ln λα =
J

E
[(1 + ν)σαα − ν(σ11 + σ22 + σ33)]; (6.97a)

E =
μ(2μ + 3λ)

λ + μ
; ν =

λ

2λ + 2μ
. (6.97b,c)

Remark 6.6: At the initial unstressed configuration, J = λα = 1, σαα = 0,
and the principal directions coincide with the three spatial directions nα = eα

and therefore Tαj = δαj . Substituting these values into Equations (6.95),
(6.91), and (6.90) gives the initial elasticity tensor for this type of material as

c ijkl = λδijδkl + μ
(
δikδjl + δilδjk

)
, (6.98)

which again (see Remark 6.3) coincides with the standard spatially isotropic
elasticity tensor.

6.6.6 Nearly Incompressible Material in Principal Directions

In view of the importance of nearly incompressible material behavior, coupled with
the likelihood that such materials will be described naturally in terms of principal
stretches, it is now logical to elaborate the formulation in preparation for the case
when the material defined by Equation (6.92) becomes nearly incompressible. Once
again, the distortional components of the kinematic variables being used, namely the
stretches λα, must be identified first. This is achieved by recalling Equations (4.43)
and (4.61) for F and F̂ to give

F̂ = J−1/3F
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= J−1/3
3∑

α=1

λα nα ⊗ Nα

=
3∑

α=1

(J−1/3λα)nα ⊗ Nα. (6.99)

This enables the distortional stretches λ̂α to be identified as

λ̂α = J−1/3λα; λα = J1/3λ̂α. (6.100a,b)

Substituting (6.100a,b)b into the hyperelastic potential defined in (6.92) yields after
simple algebra a decoupled representation of this material as

Ψ(λ1, λ2, λ3) = Ψ̂(λ̂1, λ̂2, λ̂3) + U(J), (6.101)

where the distortional and volumetric components are

Ψ̂(λ̂1, λ̂2, λ̂3) = μ[(ln λ̂1)2 + (ln λ̂2)2 + (ln λ̂3)2]; (6.102a)

U(J) = 1
2κ(ln J)2; κ = λ + 2

3μ. (6.102b)

Note that this equation is a particular case of the decoupled Equation (6.60) with
alternative definitions of U(J) and Ψ̂. The function U(J) will enforce incompress-
ibility only when the ratio κ to μ is sufficiently high, typically 103–104. Under such
conditions the value of J is J ≈ 1 and ln J ≈ J − 1, and therefore the value of U

will approximately coincide with the function defined in (6.61).
For the expression U(J), the corresponding value of the hydrostatic pressure

p is re-evaluated using Equation (6.63) to give

p =
dU

dJ
=

κ ln J

J
. (6.103)

In order to complete the stress description, the additional deviatoric component
must be evaluated by recalling Equation (6.79) as

σαα =
1
J

∂Ψ
∂ ln λα

=
1
J

∂Ψ̂
∂ ln λα

+
1
J

∂U

∂ ln λα

=
1
J

∂Ψ̂
∂ ln λα

+
κ ln J

J
. (6.104)
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Observing that the second term in this equation is the pressure, the principal devi-
atoric stress components are, obviously,

σ′
αα =

1
J

∂Ψ̂
∂ ln λα

. (6.105)

In order to obtain the derivatives of Ψ̂ it is convenient to rewrite this function with
the help of Equation (6.100a,b)a as

Ψ̂ = μ[(ln λ̂1)2 + (ln λ̂2)2 + (ln λ̂3)2]

= μ[(ln λ1)2 + (ln λ2)2 + (ln λ3)2] +
1
3
μ(ln J)2

− 2
3
μ(ln J)(ln λ1 + ln λ2 + ln λ3)

= μ[(ln λ1)2 + (ln λ2)2 + (ln λ3)2] − 1
3
μ(ln J)2. (6.106)

This expression for Ψ̂ is formally identical to Equation (6.92) for the complete
hyperelastic potential Ψ with the Lamè coefficient λ now replaced by −2μ/3. Con-
sequently, Equation (6.94) can now be recycled to give the deviatoric principal
stress component as

σ′
αα =

2μ

J
ln λα − 2μ

3J
ln J. (6.107)

The final stage in this development is the evaluation of the volumetric and
deviatoric components of the spatial elasticity tensor c . For a general decoupled
hyperelastic potential this decomposition is embodied in Equation (6.68), where c
is expressed as

c = ĉ +c p +cκ, (6.108)

where the origin of the pressure component c p is the second term in the
general equation for the Lagrangian elasticity tensor (6.65), which is entirely
geometrical, that is, independent of the material being used, and therefore remains
unchanged as given by Equation (6.59b). However, the volumetric component
cκ depends on the particular function U(J) being used and in the present case
becomes,

cκ = J
d2U

dJ2 I ⊗ I

=
κ − pJ

J
I ⊗ I . (6.109)
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The deviatoric component of the elasticity tensor ĉ emerges from the push
forward of the first term in Equation (6.65). Its evaluation is facilitated by again
recalling that Ψ̂ coincides with Ψ when the parameter λ is replaced by −2μ/3.
A reformulation of the spatial elasticity tensor following the procedure previously
described with this substitution and the corresponding replacement of σαα by σ′

αα

inevitably leads to the Cartesian components ofĉ as

ĉ ijkl =
3∑

α,β=1

1
J

∂2Ψ̂
∂ ln λα∂ ln λβ

TαiTαjTβkTβl −
3∑

α=1

2σ′
ααTαiTαjTαkTαl

+
3∑

α,β=1
α�=β

σ′
ααλ2

β −σ′
ββλ2

α

λ2
α −λ2

β

(
TαiTβjTαkTβl + TαiTβjTβkTkl

)
, (6.110)

where the derivatives of Ψ̂ for the material under consideration are

1
J

∂2Ψ̂
∂ ln λα∂ ln λβ

=
2μ

J
δαβ − 2μ

3J
. (6.111)

6.6.7 Plane Strain and Plane Stress Cases

The plane strain case is defined by the fact that the stretch in the third direction
λ3 = 1. Under such conditions, the stored elastic potential becomes

Ψ(λ1, λ2) = μ[(ln λ1)2 + (ln λ2)2] +
λ

2
(ln j)2, (6.112)

where j = det2×2 F is the determinant of the components of F in the n1 and n2

plane. The three stresses are obtained using exactly Equation (6.94) with λ3 = 1
and J = j.

The plane stress case is a little more complicated, in that it is the stress in the
n3 direction rather than the stretch that is constrained, that is, σ33 = 0. Imposing
this condition in Equation (6.94) gives

σ33 = 0 =
λ

J
ln J +

2μ

J
ln λ3, (6.113)

from which the logarithmic stretch in the third direction emerges as

ln λ3 = − λ

λ + 2μ
ln j. (6.114)
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Substituting this expression into Equation (6.92) and noting that ln J = ln λ3+ln j

gives

Ψ(λ1, λ2) = μ[(ln λ1)2 + (ln λ2)2] +
λ̄

2
(ln j)2, (6.115)

where the effective Lame coefficient λ̄ is

λ̄ = γλ; γ =
2μ

λ + 2μ
. (6.116a,b)

Additionally, using Equation (6.114) the three-dimensional volume ratio J can be
found as a function of the planar component j as

J = jγ . (6.117)

By either substituting Equation (6.114) into Equation (6.94) or differentiating
Equation (6.115) the principal Cauchy stress components are obtained as

σαα =
λ̄

jγ
ln j +

2μ

jγ
ln λα, (6.118)

and the coefficients of the Eulerian elasticity tensor become

1
J

∂2Ψ
∂ ln λα∂ ln λβ

=
λ̄

jγ
+

2μ

jγ
δαβ . (6.119)

6.6.8 Uniaxial Rod Case

In a uniaxial rod case, the stresses in directions orthogonal to the rod, σ22 and σ33,
vanish. Imposing this condition in Equation (6.94) gives two equations as

λ ln J + 2μ ln λ2 = 0; (6.120a)

λ ln J + 2μ ln λ3 = 0; (6.120b)

from which it easily follows that the stretches in the second and third directions are
equal and related to the main stretch via Poisson’s ratio ν as

ln λ2 = ln λ3 = −ν ln λ1; ν =
λ

2λ + 2μ
. (6.121)
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Using Equations (6.93–6.94) and (6.121), we can find a one-dimensional constitu-
tive equation involving the rod stress σ11, the logarithmic strain ln λ1, and Young’s
modulus E as

σ11 =
E

J
ln λ1; E =

μ(2μ + 3λ)
λ + μ

, (6.122)

where J can be obtained with the help of Equation (6.121)* in terms of λ1 and ν

as

J = λ
(1−2ν)
1 . (6.123)

Observe that Equation (6.122) is precisely that used in Chapter 3, Equation (3.16),
and that for the incompressible case where J = 1, Equation (6.122) coincides with
the uniaxial constitutive equation employed in Chapter 1.

Finally, the stored elastic energy given by Equation (6.92) becomes

Ψ(λ1) =
E

2
(ln λ1)2, (6.124)

and, choosing a local axis in the direction of the rod, the only effective term in the
Eulerian tangent modulus c 1111 is given by Equation (6.90) as

c 1111 =
1
J

∂2Ψ
∂ ln λ1∂ ln λ1

− 2σ11 =
E

J
− 2σ11. (6.125)

Again, for the incompressible case J = 1, the term E − 2σ11 was already apparent
in Chapter 1, where the equilibrium equation of a rod was linearized in a direct
manner.

Exercises

1. In a plane stress situation, the right Cauchy–Green tensor C is

C =

⎡⎢⎣C11 C12 0
C21 C22 0
0 0 C33

⎤⎥⎦ ; C33 =
h2

H2 ;

* Alternatively, see Example 3.1 on Page 66.
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where H and h are the initial and current thickness respectively. Show that
incompressibility implies

C33 = III −1
C

; (C −1)33 = IIIC ; C =

[
C11 C12

C21 C22

]
.

Using these equations, show that for an incompressible neo-Hookean material
the plane stress condition S33 = 0 enables the pressure in Equation (6.54) to
be explicitly evaluated as

p = 1
3μ
(
IC − 2III−1

C

)
,

and therefore the in-plane components of the second Piola–Kirchhoff and
Cauchy tensors are

S = μ
(
Ī −III−1

C
C

−1);
σ̄ = μ(b̄ −III−1

b̄
Ī);

where the overline indicates the 2 × 2 components of a tensor.
2. Show that the equations in Exercise 1 can also be derived by imposing the

condition C33 = III−1
C̄

in the neo-Hookean elastic function Ψ to give

Ψ(C) = 1
2μ(IC +III−1

C
− 3),

from which S is obtained by differentiation with respect to the in-plane tensor
C. Finally, prove that the Lagrangian and Eulerian in-plane elasticity tensors are

C = 2μIII −1
C

(C −1 ⊗ C
−1 + I );

c̄ = 2μIII−1
b̄

(Ī ⊗ Ī + ī ).

3. Using the push back–pull-forward relationships between Ė and d and between
C andc , show that

Ė : C : Ė = Jd :c : d

for any arbitrary motion. Using this equation and recalling Example 6.2,
show that

Jc = 4b
∂2Ψ
∂b∂b

b.

Check that using this equation for the compressible neo-Hookean model you
retrieve Equation (6.38).

4. Using the simple stretch-based hyperelastic equations discussed in Sec-
tion 6.6.5, show that the principal stresses for a simple shear test are

σ11 = −σ22 = 2μ sinh−1 γ
2 .

Find the Cartesian stress components.
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5. A general type of incompressible hyperelastic material proposed by Ogden is
defined by the following strain energy function:

Ψ =
N∑

p=1

μp

αp

(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)
.

Derive the homogeneous counterpart of this functional. Obtain expressions for
the principal components of the deviatoric stresses and elasticity tensor.



C H A P T E R S E V E N

LARGE ELASTO-PLASTIC
DEFORMATIONS

7.1 INTRODUCTION

Many materials of practical importance, such as metals, do not behave in a hyper-
elastic manner at high levels of stress. This lack of elasticity is manifested by the
fact that when the material is freed from stress it fails to return to the initial unde-
formed configuration, and instead permanent deformations are observed. Different
constitutive theories or models such as plasticity, viscoplasticity, and others are
commonly used to describe such permanent effects. Although the mathematics of
these material models is well understood in the small strain case, the same is not
necessarily true for finite deformation.

A complete and coherent discussion of these inelastic constitutive models is
well beyond the scope of this Chapter. However, because practical applications of
nonlinear continuum mechanics often include some permanent inelastic deforma-
tions, it is pertinent to give a brief introduction to the basic equations used in such
applications. The aim of this introduction is simply to familiarize the reader with
the fundamental kinematic concepts required to deal with large strains in inelas-
tic materials. In particular, only the simplest possible case of Von Mises plasticity
with isotropic hardening will be fully considered, although the kinematic equations
described and the overall procedure will be applicable to more general materials.

We will assume that the reader has some familiarity with small strain inelastic
constitutive models such as plasticity because several of the key equations to be
introduced will not be fully justified but loosely based on similar expressions that
are known to apply to small strain theory. More in-depth discussions can be found
in Bibliography.

188
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7.2 THE MULTIPLICATIVE DECOMPOSITION

Consider the deformation of a given initial volume V into the current volume v

as shown in Figure 7.1. An elemental vector dX in the local neighborhood of a
given initial particle P will deform into the spatial vector dx in the neighborhood
of p shown in the figure. If the neighborhood of p could be isolated and freed from
all forces, the material in that neighborhood would reach a new unloaded configu-
ration characterized by the spatial vector dx̃ (Figure 7.2). Observe that insofar as
this neighborhood is conceptually isolated from the surrounding material it can be
arbitrarily rotated without changing the intrinsic nature of the deformation of the
material in the neighborhood. This potential indeterminacy will have implications
on the choice of kinematic variables used in the subsequent formulation. Of course
if the material is elastic, this unloaded configuration will differ from the initial
undeformed state only by a rigid body rotation. In the case of inelastic materials,
however, this is not true and a certain amount of permanent deformation is possi-
ble. Note also that the unloaded state can only be defined locally, as the removal
of all forces acting on v may not lead to a global stress-free state but to a complex
self-equilibrating stress distribution.

As a result of the local elastic unloading the spatial vector dx becomes dx̃.
The relationship between dX and dx is given by the deformation gradient F as
explained in Chapter 4, Section 4.4. Similarly, the relationship between dx̃ and dx

is given by the elastic component of the deformation gradient Fe, and dX and dx̃

are related by the permanent or inelastic component Fp. These relationships are
summarized as

d x

dX

p

P

φ

X3, x3

X2, x2

X1, x1

Time = 0

Time = t

FIGURE 7.1 Deformation in a small neighborhood.
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Time = t

Time = 0

dx

dx

dX

Fe

~

F

Fp

X3 , x3 , x3
~

X2 , x2 , x2
~

X1 , x1 , x1
~

FIGURE 7.2 Multiplicative decomposition in the small neighborhood of a particle.

dx = F dX; (7.1a)

dx = Fe dx̃; (7.1b)

dx̃ = Fp dX; (7.1c)

for any arbitrary elemental vector dX. Combining Equations (7.1b) and (7.1c) and
comparing with (7.1a) gives

F = FeFp. (7.2)

This equation is known as the multiplicative decomposition of the deformation
gradient into elastic and permanent components and constitutes the kinematic foun-
dation for the theory that follows. Recalling that F = ∂x/∂X, it would be tempting
to assume that it is possible to find an overall stress-free plastic state x̃ such that
Fp = ∂x̃/∂X and Fe = ∂x/∂x̃. This is, unfortunately, not possible because the
unloaded state can only be defined locally insofar as the locally unloaded neighbor-
hoods cannot be re-assembled together to give an overall stress-free configuration
because they will not necessarily be geometrically compatible with each other.*

Strain measures that are independent of rigid body rotations can now be derived
from F and its elastic and inelastic or permanent components. For instance, total
right Cauchy–Green tensors given as

C = F T F ; Cp = FT
p Fp; Ce = FT

e Fe; (7.3a,b,c)

* This is analogous to a statically indeterminate truss in which the external loading is such that some members
reach the yield stress but upon complete removal of the external loading the same members may not revert to
their original unstressed condition. That is, if these members were completely individually unstressed then joint
compatibility would not be achieved.
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are often used for the development of inelastic constitutive equations. Observe that,
like C, Cp is a tensor defined in the reference configuration X, whereas Ce is a
tensor defined with reference to the permanent plastic state x̃.

The stored elastic energy function Ψ is now a function of the elastic right
Cauchy–Green tensor, Ce, as

Ψ = Ψ(Ce,X) (7.4)

and following similar arguments to those used in relation to Equations (6.7a,b),
equations for the second Piola–Kirchhoff and Kirchhoff stresses are derived from
Ψ as

S̃ = 2
∂Ψ
∂Ce

; σ = FeS̃FT
e ; τ = Jσ. (7.5a,b,c)

For isotropic materials it is possible and often simpler to formulate the consti-
tutive equations in the current configuration by using the elastic left Cauchy–Green
tensor be given as

be = FeF
T
e

= FF −1
p F −T

p F T

= FC−1
p F T . (7.6)

Given that the invariants of be contain all the information needed to evaluate the
stored elastic energy function and recalling Equation (6.25) for the Cauchy stress,
a direct relationship between the Kirchhoff stress and strain energy is given as

Ψ(be,X) = Ψ
(
Ibe

,IIbe
, IIIbe

,X
)
; (7.7a)

τ = Jσ = 2ΨIbe + 4ΨIIb
2
e + 2IIIbe

ΨIIII , (7.7b)

where the Kirchhoff stress tensor τ has been introduced in this equation and will
be used in the following equations in order to avoid the repeated appearance of the
term J−1. Recall that even though the stress may be such that the material under-
goes a permanent deformation, the stress is still determined from the stored elastic
energy. For later developments it is useful to note that the tensors τ and be or b−1

e

commute, that is, τbe = beτ and τb−1
e = b−1

e τ .
As previously mentioned, an important aspect of the locally defined unloaded

state is that it can be arbitrarily rotated by a rotation matrix, Q (Figure 7.3). It is
therefore essential to use kinematic variables that are not only invariant with respect
to overall rotation of the body but are also invariant with respect to rotations, Q, of
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Time = t

Time = 0

Fe

Fp

Q

Fp

X3, x3

X2, x2

X1, x1

*

Fe
*

FIGURE 7.3 Arbitrary rotation of the elastic deformation gradient.

the unloaded state. Fortunately, it is easy to show that the permanent strain measure
Cp and the elastic left Cauchy–Green tensor be (but not Ce, Fe, and Fp) satisfy
these requirements.

This is explained by noting that the unit tensor, I , can be written as I = QT Q =
QQT which allows the multiplicative decomposition given by Equation (7.2) to be
rewritten as

F = F ∗
eF

∗
p; F ∗

e = FeQ
T ; F ∗

p = QFp. (7.8a,b,c)

Clearly, the right Cauchy–Green tensor C given in Equation (7.3a,b,c)a remains
unchanged. Rearranging the above equations, the right Cauchy–Green tensors Cp

and Ce can be re-evaluated as

C∗
p = F ∗T

p F ∗
p = FT

p QT QFp = FT
p Fp = Cp; (7.9a)

C∗
e = F ∗T

e F ∗
e = QFT

e FeQ
T = QCeQ

T . (7.9b)

This reveals that the local permanent strain measure, as given by the right Cauchy–
Green tensor, Cp, remains unchanged but that the strain measure, Ce, associ-
ated with the recovery of the local stress free (permanent) configuration from the
deformed position arbitrarily depends upon the rotation Q. It is also easy to show
that the left Cauchy–Green tensor remains unchanged given that

b∗
e = F ∗

eF
∗T
e

= FeQ
T QFT

e

= be. (7.10)
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Consequently, the stored elastic energy and the Kirchhoff stress τ , given in the
hyperelastic constitutive Equation (7.7), also remains invariant to the same rota-
tion, Q.

In view of the fact that Cp and be, unlike Fp and Fe, are invariant with respect
to an arbitrary rotation of the unloaded state suggests that Cp and be are appro-
priate kinematic measures to be employed in the development of the constitutive
equations.

7.3 RATE KINEMATICS

It is clear from Section 7.2 that the state of stress in the hyperelastic–plastic mate-
rial is determined, through be, by the deformation gradient F, and the plastic right
Cauchy–Green tensor, Cp, given by Equation (7.6) as be = FC−1

p F T .
Generally, the solution process will provide the deformation gradient F and,

consequently, to find the resulting be and thence the stresses it is necessary to
derive a procedure for the evaluation of the right Cauchy–Green tensor Cp. Recall
that the evolution of the permanent configuration is path-dependent in the sense
that Cp cannot be obtained directly from the current configuration alone. This
implies that be is also path-dependent and must be obtained by integrating a rate
form over a time or pseudo-time parameter. For elasto–plastic materials this rate
expression is obtained from the flow rule which enables the evaluation of Cp such
that Equation (7.6) provides be. Kirchhoff stresses can then be found that satisfy
the elasto–plastic constitutive equations, that is, conform to the yield criterion. Of
course such stresses may not additionally satisfy equilibrium and, computation-
ally, the Newton–Raphson procedure will need to be employed to ensure that both
constitutive equations and equilibrium are satisfied.

In order to move toward an appropriate expression of the flow rule, the rate of
be is expressed as

ḃe =
d

dt
be (F (t),Cp(t)) =

∂be

∂F
: Ḟ +

∂be

∂Cp
: Ċp. (7.11)

The two terms on the right-hand side of the above expression can be re-expressed
to provide a physical interpretation of ḃe as follows:

ḃe =
d

dt
be (F (t),Cp(t)) =

dbe

dt

∣∣∣∣
Cp=const

+
dbe

dt

∣∣∣∣
F=const

. (7.12)

The first term measures the change in be that results from the overall change in
deformation under the assumption that there is no further change in the permanent
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strain. For example, this would be correct in the case of local elastic unload-
ing. Generally, however, further permanent deformation will occur in order to
accommodate the inelastic constitutive requirements. Consequently, the second
term in Equation (7.12) measures the change in be that results from a change in
permanent deformation with the overall deformation, as given by F , remaining
constant.

When recast later in incremental form suitable for computation it will be seen
that the first term in Equation (7.12) will provide the so-called trial state of stress,
whereas the second term will lead to the so-called return mapping procedure which
modifies the trial state of stress to ensure satisfaction of the inelastic constitutive
requirements.

In order to develop a physically meaningful flow rule using the terms in Equa-
tion (7.12), it is necessary to employ the concept of work conjugacy. Physically, it
is reasonable to assert that the internal rate of work per unit initial volume, ẇ, done
by the stresses, τ , can be decomposed into an elastic recoverable and permanent
nonrecoverable components, ẇe and ẇp respectively, the latter usually being called
the rate of plastic dissipation. This can be expressed as

ẇ = ẇe + ẇp. (7.13)

These work-rate components will now be related to the terms in Equation (7.12)
and in this manner enable the development of the flow rule.

For this purpose, observe first that the total rate of work per unit undeformed
volume is given in terms of the Kirchhoff stress, τ , and velocity gradient, l, as

ẇ = τ : l = τ :

(
1
2

dbe

dt

∣∣∣∣
Cp=const

b−1
e

)
. (7.14)

The proof of this expression is given in Example 7.1. Similarly, it is shown in
Example 7.2 that the elastic component of the total work rate is

ẇe = τ : le = τ :
(

1
2

dbe

dt
b−1
e

)
, (7.15)

where the elastic velocity gradient, le, is defined by analogy with the velocity
gradient, l = ḞF −1, as

le = ḞeF
−1
e . (7.16)
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EXAMPLE 7.1: Total work rate

Proof of Equation (7.14) relating the total rate of work, ẇ, to the time derivative of
the left Cauchy–Green tensor, be. Recall the commutative property b−1

e τ = τb−1
e ,

that is, F−T
e F−1

e τ = τF−T
e F−1

e .

ẇ =
1
2
τ :

(
dbe

dt

∣∣∣∣
Cp= const

b−1
e

)

=
1
2

tr
(
τ
(
ḞC−1

p F T + FC−1
p Ḟ

T
)

F−T
e F−1

e

)
=

1
2

tr
(
τḞF−1

p F−T
p FT

p FT
e F−T

e F−1
e + τFF−1

p F−T
p Ḟ

T
F−T

e F−1
e

)
=

1
2

tr
(
τḞF −1

)
+

1
2

tr
(
τFeFpF

−1
p F−T

p Ḟ
T
F−T

e F−1
e

)
=

1
2
τ : l +

1
2

tr
(
F−T

e F−1
e τFeF

−T
p Ḟ

T
)

=
1
2
τ : l +

1
2

tr
(
τF−T

e F−1
e FeF

−T
p Ḟ

T
)

=
1
2
τ : l +

1
2

tr
(
τF−T Ḟ

T
)

=
1
2
τ : l +

1
2
τ : l = τ : l.

The rate of plastic dissipation can now be calculated from Equations (7.12–
7.14) and (7.15) as

ẇp = ẇ − ẇe

= τ :

(
1
2

dbe

dt

∣∣∣∣
Cp=const

b−1
e

)
− τ :

(
1
2

dbe

dt
b−1
e

)

= τ :

(
1
2

(
dbe

dt

∣∣∣∣
Cp=const

− dbe

dt

)
b−1
e

)

= τ :
(

−1
2

dbe

dt

∣∣∣∣
F=const

b−1
e

)
= τ : lp, (7.17)

from which the definition of the so-called plastic rate of deformation emerges as

lp = −1
2

dbe

dt

∣∣∣∣
F=const

b−1
e . (7.18)
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It will be explained in the next section that the use of this rate tensor to define the
flow rule ensures that the material dissipates energy due to plastic deformation as
efficiently as possible. This phenomenon is formally stated as the principle of max-
imum plastic dissipation which is a fundamental principle underpinning plasticity
theory.

It is important to observe that Equation (7.18) implicitly contains the rate of
change of the inelastic right Cauchy–Green tensor. This is shown in Example 7.3 as

lp = −1
2

dbe

dt

∣∣∣∣
F=const

b−1
e =

1
2
FC−1

p ĊpF
−1. (7.19)

Algorithmically, however, it will prove more convenient to use Expression (7.18)
for lp rather than (7.19) and thereby calculate Cp indirectly from a time-integrated
be as C−1

p = F −1beF
−T .

EXAMPLE 7.2: Elastic work rate

Proof of Equation (7.15) relating the total rate of elastic work, ẇe, to the time deriva-
tive of the left Cauchy–Green tensor, be. Recall again the commutative property
b−1

e τ = τb−1
e , that is, F−T

e F−1
e τ = τF−T

e F−1
e .

ẇe =
1
2
τ :
(
ḃeb

−1
e

)
=

1
2

tr
(
τ
(
ḞeF

T
e + FeḞ

T
e

)
F−T

e F−1
e

)
=

1
2

tr
(
τḞeF

−1
e

)
+

1
2

tr
(
τFeḞ

T
e F−T

e F−1
e

)
=

1
2
τ : le +

1
2

tr
(
F−T

e F−1
e τFeḞ

T
e

)
=

1
2
τ : le +

1
2

tr
(
τF−T

e F−1
e FeḞ

T
e

)
=

1
2
τ : le +

1
2

tr
(
τF−T

e ḞT
e

)
=

1
2
τ : le +

1
2
τ : le = τ : le.

Before moving on to consider rate-independent plasticity it is worthwhile
recalling the main thread of the developments achieved so far. Since large defor-
mations and finite strains are involved, the basic kinematic description requires the
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overall deformation gradient F , a permanent right Cauchy–Green tensor Cp, and
the elastic left Cauchy–Green tensor be, all functions of a time-like parameter and
related by be = FC−1

p F T . Insofar as Cp is path-dependent, be is also implicity
path-dependent and to determine be requires the integration over time of the rate
of be. Once be is determined, stresses can be evaluated from the hyperelastic energy
function given in Equation (7.7). In addition to satisfying the equilibrium conditions
the stresses must conform to the constraints of the inelastic constitutive equations
(considered later in Section 7.4).

The following sections will introduce the means by which lp can be determined
and by implication how be can be evaluated.

EXAMPLE 7.3: Plastic rate of deformation

Proof of Equation (7.19) relating the plastic rate of deformation, lp, to the time deriva-
tive of the right Cauchy–Green tensor, Ċ−1

p . Observe that the time derivative of Cp

can be found from the time derivative of C−1
p Cp = I as

Ċ−1
p Cp + C−1

p Ċp = 0;

lp = −1
2

dbe

dt

∣∣∣∣
F= const

b−1
e = −1

2
F

dC−1
p

dt
F T b−1

e

= −1
2
F

dC−1
p

dt
F T F −T CpF

−1

= −1
2
F

dC−1
p

dt
CpF

−1

=
1
2
FC−1

p ĊpF
−1.

7.4 RATE-INDEPENDENT PLASTICITY

Attention is now focused on the evaluation of the plastic rate of deformation, lp.
For elasto-plastic materials this is given by an equation known as the flow rule
which relates lp to the current state of stress in the material. The simplest case, and
the only one considered in this text, is Von Mises plasticity with linear isotropic
hardening which is defined by a yield surface function of the Kirchhoff stress τ , a
yield stress τ̄y, and a hardening variable ε̄p as
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f(τ , ε̄p) =

√
3
2
(τ ′ : τ ′) − τ̄y ≤ 0; τ̄y = τ̄0

y + Hε̄p, (7.20a,b)

where, in terms of the mean stress, p, the deviatoric component of the Kirchhoff
stress is

τ ′ = τ − pJI . (7.21)

The constant H is a material-hardening parameter and τ̄0
y is the initial yield

stress. The yield surface, often called the yield function, defines an elastic limit

as determined by the generalized scalar Von Mises equivalent stress
√

3
2(τ ′ : τ ′).

If f(τ , ε̄p) < 0 then the material behaves elastically; if f(τ , ε̄p) = 0 then the
Kirchhoff stress tensor, τ , must be such that the Von Mises equivalent stress equals
the current yield stress τ̄0

y + Hε̄p and elasto-plastic behavior ensues.
The flow rule can now be defined by

lp = −1
2

dbe

dt

∣∣∣∣
F=const

b−1
e = γ̇

∂f(τ , ε̄p)
∂τ

, (7.22)

where γ̇, a proportionality factor, is called the consistency parameter or plastic
multiplier. It is couched as a rate for dimensional consistency with the plastic rate
of deformation lp.

The flow rule given in Equation (7.22), in which the direction of the plas-
tic strain rate coincides with the gradient of the yield surface, is known as
associative.

Remark 7.1: The associative type of flow rule given in Equation (7.22)
is a consequence of the postulate of maximum dissipation of plastic work.
The total rate of work per unit initial volume, τ : l, can be expressed using
Equations (7.13–7.15) and (7.17) as

τ : l = τ : le + τ : lp, (7.23)

where τ : le is the rate of change of elastic energy and τ : lp is the plastic
dissipation rate. The postulate of maximum plastic dissipation implies that
the rate of the work put into the deformation that cannot be accommodated
elastically is being dissipated plastically by τ : lp as efficiently as possible. It
is possible to show that maximizing the term τ : lp subject to the constraint
f(τ , ε̄p) ≤ 0 leads to Equation (7.22) where γ̇ can then be interpreted as a
Lagrange multiplier.
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Substituting the yield function given by Equation (7.20a,b) into the flow rule of
Equation (7.22) gives

lp = γ̇
τ ′√

2
3(τ ′ : τ ′)

= γ̇ν ; ν =
τ ′√

2
3(τ ′ : τ ′)

. (7.24a,b)

In order to define the evolution of the hardening variable ε̄p, a traditional work-
hardening approach can be adopted. Given the Von Mises equivalent stress, τ̄ ,
defined as

τ̄ =

√
3
2
(τ ′ : τ ′), (7.25)

the rate of ˙̄εp is defined to be the work conjugate to τ̄ as

ẇp = τ̄ ˙̄εp (7.26a)

= τ : lp (7.26b)

= τ : γ̇
τ ′√

2
3(τ ′ : τ ′)

(7.26c)

= γ̇τ̄ , (7.26d)

from which

˙̄εp = γ̇. (7.27)

Insofar as ˙̄εp has been defined as work conjugate to the Von Mises equivalent stress
τ̄ , the work-hardening variable ε̄p can be designated as the Von Mises equivalent
plastic strain.

Remark 7.2: Note that the volumetric component of lp, that is, tr(lp), is
zero. This can be shown by noting that by construction, tr(τ ′) = 0 to give

tr(lp) = γ̇
tr(τ ′)√

2
3(τ ′ : τ ′)

= 0. (7.28)

As a consequence the plastic deformation is incompressible and the deter-
minant of the inelastic (or plastic) deformation gradient is unity, that is,

det Fp = 1. (7.29)
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7.5 PRINCIPAL DIRECTIONS

The formulations that follow are greatly simplified by operating in principal direc-
tions. Obviously, this is essential if the hyperelastic energy is given in terms of elastic
principal stretches, λe,α, such as for Ogden materials. But perhaps more impor-
tantly in the present context employing principal directions will greatly facilitate
the integration in time of the flow rule.*

Insofar as evaluation of the flow rule will eventually yield the left Cauchy–Green
tensor be, the elastic stretches can be obtained in the usual manner by evaluating
the principal directions of be to give

be =
3∑

α=1

λ2
e,α nα ⊗ nα. (7.30)

Expressing the hyperelastic energy function in terms of the elastic stretches
and using algebra similar to that employed in Section 6.6 enables Equation (7.7b)
to be rewritten as

τ =
3∑

α=1

τααnα ⊗ nα; ταα =
∂Ψ

∂ ln λe,α
; α = 1, 2, 3. (7.31a,b)

It is crucial to observe at this point that the principal directions of be and τ are
in no way related to the principal directions that would be obtained from the total
deformation gradient F nor to the inelastic component Fp.

To proceed, it is now necessary to focus on a particular elastic material descrip-
tion. The fact that the formulation is expressed in principal directions implies that
the strain energy function should be a function of the principal stretches, λe,α, such
as those given in Section 6.6. Furthermore, for elasto-plastic behavior the nearly
incompressible nature of the overall deformation needs to be taken into account.
Even when elastic deformation is compressible the plastic strain is incompressible
and much larger than the elastic component leading to an overall behavior which is
nearly incompressible. These two requirements are met by the simple stretch-based
nearly incompressible material described in Section 6.6.6.

The principal components of the deviatoric Kirchhoff stress tensor are given
for this material as

τ ′
αα = 2μ ln λe,α − 2

3μ ln J ; τ ′
αα = ταα − p ; α = 1, 2, 3, (7.32a,b)

where the hydrostatic pressure, p, is defined in Equation (6.103).

* In fact, working in principal directions will disguise the need to employ the so-called exponential map process
favored by many authors.
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The plastic rate of deformation given in Equation (7.22) can be re-expressed in
principle directions by introducing Equation (7.30) as

lp = −1
2

dbe

dt

∣∣∣∣
F

b−1
e

= −1
2

[
d

dt

∣∣∣∣
F

(
3∑

α=1

λ2
e,α nα ⊗ nα

)]⎛⎝ 3∑
β=1

λ−2
e,β nβ ⊗ nβ

⎞⎠ . (7.33)

Due to the possibility of plastic deformation both the stretches λe,α and the direc-
tion vectors nα in the above equation are potentially subject to change with time
at constant F . As shown in Example 7.4, the time derivative of the principle direc-
tions, nα, at constant F , can be expressed in terms of the components of a skew
symmetric tensor W as

dnα

dt

∣∣∣∣
F

=
3∑

β=1

Wαβ nβ ; Wαβ = −Wβα ; Wαα = 0. (7.34a,b,c)

This enables the plastic rate of deformation tensor to be expressed in principle
directions (see Example 7.4 for proof) as

lp =
3∑

α=1

−1
2

dλ2
e,α

dt
λ−2

e,α nα ⊗ nα −
3∑

α,β=1
α�=β

1
2
Wαβ

(
λ2

e,α − λ2
e,β

λ2
e,β

)
nα ⊗ nβ.

(7.35)

In addition, for isotropic materials the yield function can always be expressed in
principle directions of τ , that is, f (τ , ε̄p) = f (ταα, ε̄p) enabling the flow rule
Equation (7.22) to be expressed in principle directions as

lp = γ̇

3∑
α=1

∂f (ταα, ε̄p)
∂ταα

nα ⊗ nα. (7.36)

The above isotropic flow rule shows that when expressed in principle directions, lp
can only contain diagonal entries. That is, there are no terms in the above equation
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with a tensorial basis nα ⊗ nβ where α �= β. Consequently, the off-diagonal com-
ponents in Equation (7.35) must be zero which reveals that Wαβ = 0 and hence
from Equation (7.34a,b,c)a,

dnα

dt

∣∣∣∣
F=const

= 0. (7.37)

This statement enables the flow rule to be written succinctly in principle directions as

lp,αα = −1
2

dλ2
e,α

dt

∣∣∣∣∣
F=const

λ−2
e,α = γ̇

∂f(ταα, ε̄p)
∂ταα

; α = 1, 2, 3, (7.38)

which can be conveniently rearranged to give

lp,αα =
dεe,α

dt

∣∣∣∣
F=const

= − γ̇
∂f(ταα, ε̄p)

∂ταα
; εe,α = ln λe,α. (7.39a,b)

The fact that the rotation term Wαβ = 0, in Equation (7.35), implies that lp is
symmetric which justifies the terminology plastic “rate of deformation,” dp, since
dp = 1

2

(
lp + lTp

)
.

Remark 7.3: Note that for the simple one-dimensional truss case described in

Chapter 3, the term −dεe,α

dt

∣∣∣
F=const

coincides with ε̇p used in Equation (3.37).

This is easily shown by rearranging Equation (3.33a,b,c,d)d as εe = ε − εp

and taking the time derivative, at constant F equivalent to constant ε.

The partial derivative of the yield function with respect to the principal direc-
tions of τ emerges as

∂f(ταα, ε̄p)
∂ταα

=
τ ′
αα√

2
3τ ′ : τ ′

= να ;

√
2
3
τ ′ : τ ′ =

(
2
3

3∑
α=1

(τ ′
αα)2

) 1
2

.

(7.40a,b)

where ν is a dimensionless direction vector normal to the yield surface described
with respect to the principal directions of τ (Figure 7.4).
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τ3

τ2τ1

ν

f (τ, εp,n) = 0

FIGURE 7.4 Dimensionless direction vector ν normal to yield surface f(τ , ε̄p).

EXAMPLE 7.4: Plastic rate of deformation in principal directions

Prove Equation (7.35) for the plastic rate of deformation lp. Recall Equation
(7.34a,b,c)a as

dnα

dt

∣∣∣∣
F

=
3∑

β=1

Wαβ nβ ,

where Wαβ describes the rotation of the principle directions nα at constant F . Now,
observe that using the above equation the time derivative of nα · nβ = δαβ at F

constant yields Equations (7.34a,b,c)b,c, that is,

Wαβ = −Wβα ; Wαα = 0.

The plastic rate of deformation, lp, can now be developed as follows:

lp = −1
2

dbe

dt

∣∣∣∣
F

b−1
e = −1

2
d

dt

∣∣∣∣
F

(
3∑

α=1

λ2
e,α nα ⊗ nα

)(
3∑

γ=1

λ−2
e,γ nγ ⊗ nγ

)

= −1
2

(
3∑

α=1

dλ2
e,α

dt

∣∣∣∣∣
F

nα ⊗ nα +
3∑

α=1

λ2
e,α

dnα

dt

∣∣∣∣
F

⊗ nα

+
3∑

α=1

λ2
e,αnα ⊗ dnα

dt

∣∣∣∣
F

)(
3∑

γ=1

λ−2
e,γ nγ ⊗ nγ

)

(continued)
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EXAMPLE 7.4: (cont.)

= −1
2

⎛⎝ 3∑
α=1

dλ2
e,α

dt

∣∣∣∣∣
F

nα ⊗ nα +
3∑

α,β=1

λ2
e,αWαβ nβ ⊗ nα

+
3∑

α,β=1

λ2
e,αWαβ nα ⊗ nβ

⎞⎠( 3∑
γ=1

λ−2
e,γ nγ ⊗ nγ

)

= −1
2

(
3∑

α=1

dλ2
e,α

dt

∣∣∣∣∣
F

nα ⊗ nα

)

−1
2

⎛⎜⎜⎝ 3∑
α,β=1
α�=β

W αβ

(
λ2

e,α − λ2
e,β

)
nα ⊗ nβ

⎞⎟⎟⎠
(

3∑
γ=1

λ−2
e,γ nγ ⊗ nγ

)
,

hence

lp =
3∑

α=1

−1
2

dλ2
e,α

dt
λ−2

e,α nα ⊗ nα −
3∑

α,β=1
α�=β

1
2
Wαβ

(
λ2

e,α − λ2
e,β

λ2
e,β

)
nα ⊗ nβ .

7.6 INCREMENTAL KINEMATICS

Computationally, as explained in Chapters 1 and 3, a solution to the nonlinear
equilibrium equations that are obtained from consideration of geometric or com-
bined geometric and material nonlinearity is found by taking a sufficient number
of load increments, which may be related to an artificial or real-time parameter.
Consequently, it is now necessary to re-visit many of the above equations in which
differentiability in “time” was implied and consider equivalent expressions in an
incremental setting.

Consider the motion between two arbitrary consecutive increments as shown
in Figure 7.5. At increment n the deformation gradient F n has known elastic and
permanent components, F e,n and F p,n respectively, that determine the state of
stress at this configuration. In order to proceed to the next configuration at n + 1, a
standard Newton–Raphson process is employed. At each iteration the deformation
gradient F n+1 can be obtained from the current geometry. In order, however, to
obtain the corresponding stresses at this increment n + 1 and thus check for equi-
librium, it is first necessary to determine the elastic and permanent components
of the current deformation gradient F n+1 = F e,n+1F p,n+1. Clearly, this is not
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Fp, n + 1

Fe, n
Fn

Fe, n + 1

Fe, n
 
+

 
1

trial

Fn+1

Fp, n

Time = 0
Time = tn

Time = tn +1

Time = tn + 1

FIGURE 7.5 Multiplicative decomposition at times t and t + Δt.

an obvious process, because during the increment an as yet unknown amount of
additional inelastic deformation may take place.

It is however possible that during the motion from n to n + 1 no further perma-
nent deformation takes place. Making this preliminary assumption F p,n+1 = F p,n

and therefore Cp,n+1 = Cp,n and a trial left Cauchy–Green tensor can be found as

btrial
e,n+1 = F n+1C

−1
p,nF T

n+1. (7.41)

Since Cp is now assumed temporarily constant, the above expression conveniently
represents the exact time integration of the first term in Equation (7.12).

Using this trial strain tensor, principal directions and a preliminary state of
stress can now be evaluated as

btrial
e,n+1 =

3∑
α=1

(
λtrial

e,α

)2
ntrial

α ⊗ ntrial
α ;

τ trial =
3∑

α=1

∂Ψ
∂ ln λtrial

e,α

ntrial
α ⊗ ntrial

α (7.42a,b)

from which the deviatoric Kirchhoff stress tensor is expressed in component form,
using Equation (7.32a,b), as

τ ′ trial =
3∑

α=1

τ ′ trial
αα ntrial

α ⊗ ntrial
α ; τ ′ trial

αα = 2μ ln λtrial
e,α − 2

3μ ln Jn+1

(7.43a,b)
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Note that τ ′ trial is the state of stress that is obtained directly from btrial
e,n+1 under the

assumption that no further inelastic strain takes place during the increment. Invari-
ably, this trial state of stress will not be compatible with the assumption that no fur-
ther permanent deformation takes place during the increment and consequently the
state of stress requires modification occasioned by further permanent deformation.

To effect this, stress modification requires a further update to be as indicated
by the second term in Equation (7.12). As previously explained, this is achieved by
integrating the flow rule over the time increment to give this additional change in
be due to plastic deformation.

In Von Mises plasticity theory, as in many other metal plasticity models, the
plastic deformation is isochoric, that is, det Fp = 1, see Equation (7.29). Under
such conditions, Jn+1 = Jn+1

e in Equation (7.43a,b), where Jn+1
e is the hyperelas-

tic elemental volume ratio, and the hydrostatic pressure p can be evaluated directly
from Jn+1 as in standard hyperelasticity; see, for instance, Equation (6.103).

The time derivative at constant F in the flow rule Equation (7.39a,b) can now
be approximated incrementally as

d ln λe,α

dt

∣∣∣∣
F=const



ln λn+1

e,α − ln λtrial
e,α

Δt
, (7.44)

and therefore the flow rule in principal directions can now be expressed in incre-
mental terms as

ln λn+1
e,α − ln λtrial

e,α = −Δγνn+1
α ; Δγ = γ̇n+1Δt. (7.45a,b)

The above equation represents a backward Euler time integration of the second
term in Equation (7.12).

Remark 7.4: Equation (7.45a,b)a provides a generalization to large strains
of the small strain incremental plastic update rule typically given as

Δεp,α = Δγ
∂f

∂σα
. (7.46)

To show this, simply note that the small strain additive decomposition
ε = εe + εp taken at increments n and n + 1 implies

Δεp,α =
(
εn+1
α − εn+1

e,α

)
− εn

p,α

=
(
εn+1
α − εn

p,α

)
− εn+1

e,α

= εtrial
e,α − εn+1

e,α . (7.47)
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This enables the flow rule to be written as

εn+1
e,α − εtrial

e,α = −Δγ
∂f

∂σα
, (7.48)

which, in the case of small strains, coincides with Equation (7.45a,b)a.
This observation can be employed to extend the theory developed in this

chapter to more general plasticity models using widely formulated return-
mapping algorithms derived in the small strain context.

The evaluation of Δγ, νn+1
α and the elastic stretches ln λn+1

e,α that ensure that τ lies
on the yield surface is known as the return-mapping algorithm which is consid-
ered in the following section. Assuming this has been accomplished and the elastic
stretches have been obtained, the updated left Cauchy–Green tensor bn+1

e can be
determined as

be,n+1 =
3∑

α=1

(
λn+1

e,α

)2
nn+1

α ⊗ nn+1
α , (7.49)

where nn+1
α can be obtained by approximating the time integration of Equa-

tion (7.37) as

dnα

dt

∣∣∣∣
F=const

=
nn+1

α − ntrial
α

Δt
= 0 (7.50)

to give nn+1
α = ntrial

α .
The updated plastic right Cauchy–Green tensor and its inverse are finally found

from Equation (7.6) as

Cp,n+1 = FT
n+1b

−1
e,n+1Fn+1; C−1

p,n+1 = F−1
n+1be,n+1F

−T
n+1. (7.51a,b)

7.6.1 The Radial Return Mapping

From Equations (7.32a,b, 7.43a,b, 7.45a,b) the deviatoric Kirchhoff stress in prin-
cipal directions can be evaluated as follows:*

τ ′
αα − τ ′ trial

αα = 2μ(ln λn+1
e,α − ln λtrial

e,α )

= −2μΔγνn+1
α (7.52)

* Strictly in (7.52) τ ′
αα should be denoted as (τ ′

αα)k
n+1, where n+1 refers to the load increment (or pseudo time

step) and k refers to the Newton–Raphson iteration that is driving the solution toward equilibrium. However, to
simplify, notation τ ′

αα is retained.
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τ3

τ2τ1

ν τn + 1′

f (τ, εp,n) = 0

f (τ, εp,n + 1) = 0 2μ Δγ

τn + 1′ trial

FIGURE 7.6 Radial return.

to give

τ ′
αα = τ ′ trial

αα − 2μΔγνn+1
α . (7.53)

By virtue of Equation (7.40a,b) the above equation indicates that τ ′ is proportional
to τ ′ trial and is therefore known as the radial return mapping (Figure 7.6). As a
consequence of this proportionality, the nondimensional direction vector ν can be
equally obtained from τ ′ trial, that is,

νn+1
α =

τ ′ trial
αα√

2
3‖τ ′ trial‖

=
τ ′
αα√

2
3‖τ ′‖

; where, generally ‖τ‖ =
√

τ : τ ,

(7.54a,b)

and therefore the only unknown in Equation (7.45a,b) is now Δγ.
In order to evaluate Δγ, multiply Equation (7.53) by νn+1

α and sum over α

to give

3∑
α=1

τ ′
αανn+1

α =
3∑

α=1

τ ′ trial
αα νn+1

α − 2μΔγ

3∑
α=1

(
νn+1

α

)2
. (7.55)

Substituting from Equation (7.54a,b), the appropriate expression for νn+1
α gives

‖τ ′‖2√
2
3‖τ ′‖

=
‖τ ′ trial‖2√

2
3‖τ ′ trial‖

− 2μΔγ

(
3
2

)
. (7.56)
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Simplifying the first two terms of the above equation together with the enforce-
ment of the yield condition (7.20a,b) gives√

3
2
τ ′ : τ ′ =

√
3
2
τ ′ trial : τ ′ trial − 3μΔγ = (τ̄0

y + Hε̄p,n + HΔε̄p).

(7.57)

In addition, integrating Equation (7.27) in time gives

Δε̄p = Δγ. (7.58)

Substituting this expression into Equation (7.57) enables Δγ to be evaluated
explicitly as

Δγ =

⎧⎨⎩
f(τ trial, ε̄p,n)

3μ + H
if f(τ trial, ε̄p,n) > 0;

0 if f(τ trial, ε̄p,n) ≤ 0.
(7.59)

Once the value of Δγ is known, the current deviatoric Kirchhoff stresses are
easily obtained by re-expressing Equation (7.53) as

τ ′
αα =

(
1 − 2μΔγ√

2/3‖τ ′ trial‖

)
τ ′ trial
αα . (7.60)

In order to be able to move on to the next increment, it is necessary to record
the current state of permanent or plastic deformation. In particular, the new value
of the Von Mises equivalent plastic strain emerges from (7.58) as

ε̄p,n+1 = ε̄p,n + Δγ. (7.61)

7.6.2 Algorithmic Tangent Modulus

The derivation of the deviatoric component of the tangent modulus for this con-
stitutive model follows the same process employed in Section 6.6, with the only
difference being that the fixed reference configuration is now the unloaded state at
increment n rather than the initial configuration. Similar algebra thus leads to

ĉ =
3∑

α,β=1

1
J

∂τ ′
αα

∂ ln λtrial
e,β

ηααββ −
3∑

α=1

2σ′
αα ηαααα

+
3∑

α,β=1
α�=β

σ′
αα

(
λtrial

e,β

)2 − σ′
ββ

(
λtrial

e,α

)2(
λtrial

e,α

)2 −
(
λtrial

e,β

)2 (
ηαβαβ + ηαββα

)
, (7.62a)
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where for any α, β, γ, δ the fourth-order tensor ηαβγδ is defined as

ηαβγδ = nα ⊗ nβ ⊗ nγ ⊗ nδ. (7.62b)

In order to implement this equation the derivatives in the first term must first be
evaluated from Equation (7.60) as

∂τ ′
αα

∂ ln λtrial
e,β

=
(

1 − 2μΔγ√
2/3 ‖τ ′ trial‖

)
∂τ ′ trial

αα

∂ ln λtrial
e,β

−2μτ ′ trial
αα√
2/3

∂

∂ ln λtrial
e,β

(
Δγ

‖τ ′ trial‖

)
. (7.63)

If the material is in the elastic regime, Δγ = 0; hence the second term in Equa-
tion (7.63) vanishes and Equation (7.43a,b)b shows that the derivatives of the trial
stresses are given by the elastic modulus as

∂τ ′ trial
αα

∂ ln λtrial
e,β

= 2μδαβ − 2
3μ. (7.64)

In the elasto-plastic regime, Δγ �= 0, and the second derivative of Equa-
tion (7.63) must be evaluated with the help of Equation (7.59) and the chain rule as

∂

∂ ln λtrial
e,β

(
Δγ

‖τ ′ trial‖

)
=

1
‖τ ′ trial‖

( √
3/2

3μ + H
− Δγ

‖τ ′ trial‖

)
∂‖τ ′ trial‖
∂ ln λtrial

e,β

,

(7.65)

where simple algebra shows that

∂‖τ ′ trial‖
∂ ln λtrial

e,β

=
1

‖τ ′ trial‖

3∑
α=1

τ ′ trial
αα

∂τ ′ trial
αα

∂ ln λtrial
e,β

=
1

‖τ ′ trial‖

3∑
α=1

τ ′ trial
αα

(
2μδαβ − 2

3μ
)

= 2μ
√

2/3 νβ . (7.66)

Finally, combining Equation (7.63) to Equation (7.66) gives the derivatives needed
to evaluate the consistent algorithmic* tangent modulus as

* This is alternatively called the consistent tangent modulus insofar as its derivation is consistent with the chosen
method of returning the trial stress to the yield surface, see also Section 3.5.6.
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∂τ ′
αα

∂ ln λtrial
e,β

=
(

1 − 2μΔγ√
2/3 ‖τ ′ trial‖

)(
2μδαβ − 2

3μ
)

− 2μ νανβ

(
2μ

3μ + H
− 2μ

√
2/3 Δγ

‖τ ′ trial‖

)
. (7.67)

The algorithmic procedure for implementing rate-independent Von Mises plas-
ticity with isotropic hardening is given in Box 7.1 and Box 7.2.

7.7 TWO-DIMENSIONAL CASES

As explained in Section 6.6.7 plane strain is defined by the fact that the stretch
in the third direction λ3 = 1. Insofar as λ3 = λe,3λp,3 it is clear that neither
λe,3 nor λp,3 need be equal to unity. This implies that the trial Kirchhoff stress
given by Equation (7.43a,b) must be evaluated in three dimensions. However,
the trial left Cauchy–Green tensor given by Equation (7.41) assumes a simpler
form as

btrial
e,n+1 =

⎡⎣F n+1(2×2) 0
0

0 0 1

⎤⎦
⎡⎢⎣C−1

p,n(2×2) 0
0

0 0 C−1
p,n(3,3)

⎤⎥⎦
⎡⎣F T

n+1(2×2) 0
0

0 0 1

⎤⎦ . (7.68)

From Equations (7.3a,b,c) and (7.29), det C−1
p,n = 1; consequently, C−1

p,n(3,3) can
easily be found as

C−1
p,n(3,3) =

1
det C−1

p,n(2×2)

. (7.69)

Observe that since λ3 �= 0 the calculation of the principal directions of btrial
e,n+1,

the principal Kirchhoff stresses, and the evaluation of the yield function pro-
ceed as for the fully three-dimensional case with other calculations remaining
two-dimensional.

For the case of plane stress the situation is not so simple as the return algorithm
is no longer radial. This is due to the fact that the yield surface becomes an ellipse
given by the intersection of a cylinder in principal directions and the horizontal
plane τ3 = 0. Plane stress behavior is not pursued further; however, details can be
found in Simo and Hughes (2000).
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BOX 7.1: Algorithm for Rate-independent Von Mises Plasticity with

Isotropic Hardening

1. For load increment n + 1
2. For Newton–Raphson iteration k

3. Find F k
n+1 and given C−1

p,n and ε̄p,n, (k now implied)

Jn+1 = detF n+1 Jacobean

p =
(

κ ln Jn+1

Jn+1

) [
≈ κ

ln (ve/V e)
(ve/V e)

] Pressure (mean stress)
[mean dilatation,
Section 8.6.5]

btrial
e,n+1 = F n+1C

−1
p,nF T

n+1 Trial left Cauchy–Green

tensor

btrial
e,n+1 =

3∑
α=1

(
λtrial

e,α

)2
ntrial

α ⊗ ntrial
α

Trial stretches and
principle directions

τ ′ trial
αα = 2μ ln λtrial

e,α − 2
3μ ln Jn+1 Trial Kirchhoff stress

4. Check for yielding

f(τ trial, ε̄p,n) ≤ 0 Yield function

5. Radial return algorithm

If f > 0

Then

νn+1
α =

τ ′ trial
αα√

2
3‖τ ′ trial‖

Direction vector

Δγ =
f(τ trial, ε̄p,n)

3μ + H

Incremental plastic
multiplier

Else

Δγ = 0 Elastic response

ln λn+1
e,α = ln λtrial

e,α − Δγνn+1
α

Logarithmic elastic
stretch

τ ′
αα =

(
1 − 2μΔγ√

2/3‖τ ′ trial‖

)
τ ′ trial
αα Return map
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6. Update inverse of elastic left Cauchy–Green tensor

be,n+1 =
3∑

α=1

(
λn+1

e,α

)2
nn+1

α ⊗ nn+1
α

nα = ntrial
α

7. Update stress

σ′
αα =

1
Jn+1

τ ′
αα

Principle deviatoric
Cauchy stress

σαα = σ′
αα + p

Principle Cauchy
stress

σ =
3∑

α=1

σααnn+1
α ⊗ nn+1

α Cauchy stress

8. Update tangent modulus

ĉ =
3∑

α,β=1

1
J

∂τ ′
αα

∂ ln λtrial
e,β

ηααββ −
3∑

α=1

2σ′
αα ηαααα

+
3∑

α,β=1
α�=β

σ′
αα

(
λtrial

e,β

)2 − σ′
ββ

(
λtrial

e,α

)2(
λtrial

e,α

)2 −
(
λtrial

e,β

)2 (
ηαβαβ + ηαββα

)

9. Update state variables

C−1
p,n+1 = F−1

n+1be,n+1F
−T
n+1

Update plastic right
Cauchy–Green tensor

ε̄p,n+1 = ε̄p,n + Δγ
Update equivalent plastic
strain

10. Check equilibrium

If R > tolerance See Box 1.1
Then

k ⇐ k + 1 GO TO 2

Else

n ⇐ n + 1 GO TO 1
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BOX 7.2: Tangent Modulus

1. Update tangent modulus

ĉ =
3∑

α,β=1

1
J

cαβ ηααββ −
3∑

α=1

2σ′
αα ηαααα

+
3∑

α,β=1
α�=β

σ′
αα

(
λtrial

e,β

)2 − σ′
ββ

(
λtrial

e,α

)2(
λtrial

e,α

)2 −
(
λtrial

e,β

)2 (
ηαβαβ + ηαββα

)
If f > 0

Then cαβ =
(

1 − 2μΔγ√
2/3 ‖τ ′ trial‖

)(
2μδαβ − 2

3μ
)

−2μ νανβ

(
2μ

3μ + H
− 2μ

√
2/3 Δγ

‖τ ′ trial‖

)
Plastic
response

Else cαβ = 2μδαβ − 2
3μ

Elastic
response

Exercises

1. Using the multiplicative decomposition F = F eF p and the expressions
l = ḞF −1 and le = Ḟ eF

−1
e , show that the plastic rate of deformation lp

can be obtained as

lp = F eḞ pF
−1
p F −1

e .

2. Starting from the expression F e = F e(F ,F p) and using a decompostion
similar to that shown in Equation (7.12), show that

lp = − dF e

dt

∣∣∣∣
F=const

F −1
e .

3. Use the equation obtained in the previous exercise to derive the flow rule in prin-
ciple directions following a procedure similar to that described in Section 7.5.

4. Consider a material in which the internal elastic energy is expressed as
Ψ(C,Cp). Show that the plastic dissipation rate can be expressed as

ẇp = − ∂Ψ
∂CP

Cp.
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Starting from this expression and using the principle of maximum plastic dis-
sipation, show that if the yield surface is defined in terms of C and Cp by
f(C,Cp) ≤ 0 then the flow rule becomes

∂2Ψ
∂C∂CP

: Ċp = −γ
∂f

∂C
.



C H A P T E R E I G H T

LINEARIZED EQUILIBRIUM
EQUATIONS

8.1 INTRODUCTION

The virtual work representation of the equilibrium equation presented in Section 5.4
is nonlinear with respect to both the geometry and the material. For a given material
and loading conditions, its solution is given by a deformed configuration φ in a state
of equilibrium. In order to obtain this equilibrium position using a Newton–Raphson
iterative solution, it is necessary to linearize the equilibrium equations using the
general directional derivative procedure discussed in Chapter 2. Two approaches
are in common use: some authors prefer to discretize the equilibrium equations and
then linearize with respect to the nodal positions, whereas others prefer to linearize
the virtual work statement and then discretize. The latter approach is more suit-
able for solid continua and will be adopted herein, although in some cases where a
nonstandard discretization is used this approach may not be possible.

8.2 LINEARIZATION AND NEWTON–RAPHSON

PROCESS

The principle of virtual work has been expressed in Chapter 5 in terms of the virtual
velocity as

δW (φ, δv) =
∫

v
σ : δd dv −

∫
v
f · δv dv −

∫
∂v

t · δv da = 0. (8.1)

Considering a trial solution φk, the above equation can be linearized in the direction
of an increment u in φk as

δW (φk, δv) + DδW (φk, δv)[u] = 0. (8.2)

216
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u

f

V

υ

δvδv

n

t

u(xp)

X3, x3

X2, x2

X1, x1

Time = 0

Time = t

φ

∂υ

FIGURE 8.1 Linearized equilibrium.

Consequently, it is necessary to find the directional derivative of the virtual work
equation at φk in the direction of u. It is worth pausing first to ask what this means!
To begin, a virtual velocity δv(φ(X)) is associated with every particle labeled
X in the body, and it is not allowed to alter during the incremental change u(x)
(Figure 8.1). At a trial solution position φk, δW (φk, δv) will have some value,
probably not equal to zero as required for equilibrium. The directional derivative
DδW (φk, δv)[u] is simply the change in δW due to φk changing to φk +u. Since
δv remains constant during this change, the directional derivative must represent
the change in the internal forces due to u (assuming that external forces are con-
stant). This is precisely what is needed in the Newton–Raphson procedure to adjust
the configuration φk in order to bring the internal forces into equilibrium with the
external forces. Hence, the directional derivative of the virtual work equation will
be the source of the tangent matrix.

The linearization of the equilibrium equation will be considered in terms of the
internal and external virtual work components as

DδW (φ, δv)[u] = DδWint(φ, δv)[u] − DδWext(φ, δv)[u], (8.3)

where,

δWint(φ, δv) =
∫

v
σ : δd dv; (8.4a)

δWext(φ, δv) =
∫

v
f · δv dv +

∫
∂v

t · δv da. (8.4b)



218 L I N E A R I Z E D E Q U I L I B R I U M E Q U AT I O N S

8.3 LAGRANGIAN LINEARIZED INTERNAL

VIRTUAL WORK

Although the eventual discretization of the linearized equilibrium equations will be
formulated only for the Eulerian case, it is nevertheless convenient to perform the
linearization with respect to the material description of the equilibrium equations,
simply because the initial elemental volume dV is constant during the linearization.
This will then be transformed by a push-forward operation to the spatial configu-
ration. Recall from Equation (5.43) that the internal virtual work can be expressed
in a Lagrangian form as

δWint(φ, δv) =
∫

V
S : δĖ dV. (8.5)

Using the product rule for directional derivatives and the definition of the material
elasticity tensor, the directional derivative is obtained as

DδWint(φ, δv)[u] =
∫

V
D(δĖ : S)[u] dV

=
∫

V
δĖ : DS[u] dV +

∫
V

S : DδĖ[u] dV

=
∫

V
δĖ : C : DE[u] dV +

∫
V

S : DδĖ[u] dV, (8.6)

where DE[u] is given by Equation (4.71). The term DδĖ[u] in the second integral
emerges from the fact that δĖ, as given by Equation (4.97), is a function not only
of δv but also of the configuration φ as

δĖ =
1
2
(δḞ

T
F + F T δḞ ); δḞ =

∂δv
∂X

= ∇0δv. (8.7)

The directional derivative of this equation can be easily found recalling from
Equation (4.70) that DF [u] = ∇0u to give

DδĖ[u] =
1
2
[(∇0δv)T ∇0u + (∇0u)T ∇0δv]. (8.8)

Observe that because the virtual velocities are not a function of the configuration
the term ∇0δv remains constant. Substituting Equation (8.8) into (8.6) and noting
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the symmetry of S gives the material or Lagrangian linearized principle of virtual
work as

DδWint(φ, δv)[u] =
∫

V
δĖ : C : DE[u] dV +

∫
V

S : [(∇0u)T ∇0δv] dV.

(8.9)

Given the relationship between the directional and time derivatives as explained
in Section 4.11.3, note that δĖ can be expressed as DE[δv], which enables Equa-
tion (8.9) to be written in a more obviously symmetric form as

DδWint(φ, δv)[u] =
∫

V
DE[δv] : C : DE[u] dV +

∫
V

S : [(∇0u)T ∇0δv] dV.

(8.10)

8.4 EULERIAN LINEARIZED INTERNAL

VIRTUAL WORK

Equation (8.10) can perfectly well be used and may indeed be more appropriate in
some cases for the development of the tangent stiffness matrix. Nevertheless, much
simplification can be gained by employing the equivalent spatial alternative to give
the same tangent matrix. To this end, the materially based terms in Equation (8.10)
must be expressed in terms of spatially based quantities. These relationships are
manifest in the following pull-back and push-forward operations:

DE[u] = φ−1
∗ [ε] = F T εF ; 2ε = ∇u + (∇u)T ; (8.11a)

DE[δv] = φ−1
∗ [δd] = F T δd F ; 2δd = ∇δv + (∇δv)T ; (8.11b)

Jσ = φ∗[S] = FSF T ; (8.11c)

Jc = φ∗[C]; Jc ijkl =
3∑

I,J,K,L=1

FiIFjJFkKFlLCIJKL; (8.11d)

JdV = dv. (8.11e)

With the help of these transformations it can be shown that the first integrand in
Equation (8.10) can be re-expressed in a spatial framework as

DE[δv] : C : DE[u]dV = δd :c : εdv. (8.12)
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Additionally, the gradient with respect to the initial particle coordinates appearing
in the second integral in Equation (8.10) can be related to the spatial gradient using
the chain rule – see Equation (4.69) – to give

∇0u = (∇u)F ; (8.13a)

∇0δv = (∇δv)F . (8.13b)

Substituting these expressions into the second term of Equation (8.10) and using
Equation (8.11c) for the Cauchy and second Piola–Kirchhoff stresses reveals that
the second integrand can be rewritten as

S : [(∇0u)T (∇0δv)]dV = σ : [(∇u)T (∇δv)]dv. (8.14)

Finally, Equation (8.10) can be rewritten using Equations (8.12) and (8.14) to give
the spatial or Eulerian linearized equilibrium equations as

DδWint(φ, δv)[u] =
∫

v
δd : c : ε dv +

∫
v
σ : [(∇u)T ∇δv]dv. (8.15)

This equation will be the basis for the Eulerian or spatial evaluation of the tangent
matrix. Observe that the functional relationship between δd and δv is identical to
ε and u. This together with the symmetry of c and σ implies that the terms u and
δv can be interchanged in this equation without altering the result. Consequently,
the linearized virtual work equation is symmetric in δv and u, that is,

DδWint(φ, δv)[u] = DδWint(φ,u)[δv]. (8.16)

This symmetry will, upon discretization, yield a symmetric tangent stiffness matrix.

EXAMPLE 8.1: Proof of Equation (8.12)

In order to prove Equation (8.12), rewrite first Expressions (8.11a–b) in indicial
notation as

DEIJ [δv] =
∑
i,j

FiIδdijFjJ ; DEKL[u] =
∑
k,l

FkKεklFlL;

(continued)
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EXAMPLE 8.1: (cont.)

with the help of these expressions and Equation (8.11d), the left-hand side of Equa-
tion (8.12) can be manipulated to give

DE[δv] : C : DE[u] dV

=
∑

I,J,K,L

DEIJ [δv]CIJKLDEKL[u] dV

=
∑

I,J,K,L

(∑
i,j

FiIδdijFjJ

)
CIJKL

(∑
k,l

FkKεklFlL

)
J−1dv

=
∑

i,j,k,l

δdij

( ∑
I,J,K,L

FiIFjJFkKFlLCIJKLJ−1
)

εkl dv

=
∑

i,j,k,l

δdijc ijklεkl dv

= δd :c : ε dv.

8.5 LINEARIZED EXTERNAL VIRTUAL WORK

The external virtual work has contributions from body forces f and surface trac-
tions t. These two cases will now be considered separately.

8.5.1 Body Forces

The most common example of a body force is self-weight or gravity loading, in
which case f = ρg, where ρ is the current density and g is the acceleration due to
gravity. By a simple pull back of the body force component in Equation (8.4b) it is
easy to show that in this simple case the loading is not deformation-dependent and
therefore the corresponding directional derivative vanishes. Recall for this purpose
Equation (4.59) as ρ = ρ0/J , which when substituted in the first term of the external
virtual work Equation (8.4b) gives

δW f
ext(φ, δv) =

∫
v

ρ0

J
g · δv dv =

∫
V

ρ0g · δv dV. (8.17)

It is clear that none of the terms in this expression depend on the current geometry,
and hence its linearization is superfluous, that is, DδW f

ext(φ, δv)[u] = 0.
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8.5.2 Surface Forces

Although a wide variety of traction forces exist, only the important case of uni-
form normal pressure will be addressed. The techniques, however, illustrated by
this simple example are relevant to more complex situations such as frictional
contact.

Figure 8.2 shows a general body with an applied uniform pressure p acting on
a surface a having a pointwise normal n. The traction force vector t is therefore
pn and the corresponding virtual work component is

δW p
ext(φ, δv) =

∫
a
pn · δv da. (8.18)

In this equation the magnitude of the area element and the orientation of the nor-
mal are both displacement-dependent. Consequently, any change in geometry will
result in a change in the equilibrium condition and the emergence of a stiffness term.
Although it may be tempting to attempt the linearization of Equation (8.18) by a
pull back to the initial configuration in the usual manner, a more direct approach
is available by using an arbitrary parameterization of the surface as shown in Fig-
ure 8.2. (An understanding of this approach is facilitated by imagining the surface
area a to be a single isoparametric element.) In terms of this parameterization the
normal and area elements can be obtained in terms of the tangent vectors ∂x/∂ξ and
∂x/∂η as

n =
∂x
∂ξ × ∂x

∂η∥∥∥∂x
∂ξ × ∂x

∂η

∥∥∥ ; da =
∥∥∥∥∂x

∂ξ
× ∂x

∂η

∥∥∥∥ dξdη, (8.19)

x1

x2

x3

Aξ

ξ
ξ

η

dl

a

x(ξ, η) η
n

p

∂Aξ

∂a

∂x/∂ξ

∂x/∂η

υ

ν

FIGURE 8.2 Uniform surface pressure.



8.5 L I N E A R I Z E D E X T E R N A L V I R T U A L W O R K 223

which enables Integral (8.18) to be expressed in the parameter plane as

δW p
ext(φ, δv) =

∫
Aξ

pδv ·
(

∂x

∂ξ
× ∂x

∂η

)
dξdη. (8.20)

Note that the only displacement-dependent items in this equation are the vectors
∂x/∂ξ and ∂x/∂η, which linearize to ∂u/∂ξ and ∂u/∂η respectively. Hence the
use of the product rule and a cyclic manipulation of the triple product gives

DδW p
ext(φ, δv)[u] =

∫
Aξ

p

[
∂x

∂ξ
·
(

∂u

∂η
× δv

)
− ∂x

∂η
·
(

∂u

∂ξ
× δv

)]
dξdη.

(8.21)

It is clear that Equation (8.21) is unsymmetric in the sense that the terms u

and δv cannot be interchanged without altering the result of the integral. Hence
the discretization of this term would, in general, yield an unsymmetric tangent
matrix component. However, for the special but frequently encountered case where
the position of points along the boundary ∂a is fixed or prescribed, a symmetric
matrix will indeed emerge after assembly. This is demonstrated by showing that
the integration theorems discussed in Section 2.4.2 enable Equation (8.21) to be
rewritten as

DδW p
ext(φ, δv)[u] =

∫
Aξ

p

[
∂x

∂ξ
·
(

∂δv
∂η

× u

)
− ∂x

∂η
·
(

∂δv
∂ξ

× u

)]
dξdη

+
∮

∂Aξ

p(u × δv) ·
(

νη
∂x

∂ξ
− νξ

∂x

∂η

)
dl, (8.22)

where ν = [νξ, νη]T is the vector in the parameter plane normal to ∂Aξ. For the
special case where the positions along ∂a are fixed or prescribed, both the iterative
displacement u and the virtual velocity δv are zero a priori along ∂Aξ and the sec-
ond integral in the above expression vanishes. (Additionally, if a symmetry plane
bisects the region a, then it is possible to show that the triple product in the second
term of Equation (8.22) is also zero along this plane.) Anticipating closed boundary
conditions a symmetric expression for DδW p

ext(φ, δv)[u] can be constructed by
adding half Equations (8.21) and (8.22) to give

DδW p
ext(φ, δv)[u] =

1
2

∫
Aξ

p
∂x

∂ξ
·
[(

∂u

∂η
× δv

)
+
(

∂δv
∂η

× u

)]
dξdη

−1
2

∫
Aξ

p
∂x

∂η
·
[(

∂u

∂ξ
× δv

)
+
(

∂δv
∂ξ

× u

)]
dξdη.

(8.23)
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Discretization of this equation will obviously lead to a symmetric component
of the tangent matrix.

EXAMPLE 8.2: Proof of Equation (8.22)

Repeated use of cyclic permutations of the triple product on Equation (8.21) and the
integration theorem give

DδW p
ext(φ, δv)[u] =

∫
Aξ

p

[
∂u

∂η
·
(

δv × ∂x

∂ξ

)
− ∂u

∂ξ
·
(

δv × ∂x

∂η

)]
dξdη

=
∫

Aξ

p

[
∂

∂η

(
∂x

∂ξ
· (u × δv)

)
− ∂

∂ξ

(
∂x

∂η
· (u × δv)

)]
dξdη

−
∫

Aξ

p

[
∂x

∂ξ
·
(

u × ∂δv
∂η

)
− ∂x

∂η
·
(

u × ∂δv
∂ξ

)]
dξdη

=
∫

Aξ

p

[
∂x

∂ξ
·
(

∂δv
∂η

× u

)
− ∂x

∂η
·
(

∂δv
∂ξ

× u

)]
dξdη

+
∮

∂Aξ

p(u × δv) ·
(

νη
∂x

∂ξ
− νξ

∂x

∂η

)
dl.

8.6 VARIATIONAL METHODS AND

INCOMPRESSIBILITY

It is well known in small strain linear elasticity that the equilibrium equation
can be derived by finding the stationary position of a total energy potential with
respect to displacements. This applies equally to finite deformation situations
and has the additional advantage that such a treatment provides a unified frame-
work within which such topics as incompressibility, contact boundary conditions,
and finite element technology can be formulated. In particular, in the context of
incompressibility a variational approach conveniently facilitates the introduction
of Lagrangian multipliers or penalty methods of constraint, where the resulting
multifield variational principles incorporate variables such as the internal pressure.
The use of an independent discretization for these additional variables resolves
the well-known locking problem associated with incompressible finite element
formulations.
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8.6.1 Total Potential Energy and Equilibrium

A total potential energy functional whose directional derivative yields the principle
of virtual work is

Π(φ) =
∫

V
Ψ(C) dV −

∫
V

f0 · φ dV −
∫

∂V
t0 · φ dA. (8.24)

To proceed, we assume that the body and traction forces are not functions of the
motion. This is usually the case for body forces f0, but it is unlikely that traction
forces t0 will conform to this requirement in a finite deformation context. (Obvi-
ously both these terms are independent of deformation in the small displacement
case.) Under these assumptions the stationary position of the above functional is
obtained by equating to zero its derivative in an arbitrary direction δv to give

DΠ(φ)[δv] =
∫

V

∂Ψ
∂C

: DC[δv] dV −
∫

V
f0 · δv dV −

∫
∂V

t0 · δv dA

=
∫

V
S : DE[δv] dV −

∫
V

f0 · δv dV −
∫

∂V
t0 · δv dA = 0,

(8.25)

where Equation (6.7) for S has been used. Observe that this equation is identical
to the principle of virtual work, that is,

DΠ(φ)[δv] = δW (φ, δv), (8.26)

and consequently the equilibrium configuration φ renders stationary the total poten-
tial energy. The stationary condition of Equation (8.24) is also known as a vari-
ational statement of equilibrium. Furthermore, the linearized equilibrium Equa-
tion (8.10) or (8.15) can be interpreted as the second derivative of the total potential
energy as,

DδW (φ, δv)[u] = D2Π(φ)[δv,u]. (8.27)

8.6.2 Lagrange Multiplier Approach to Incompressibility

We have seen in Chapter 6 that for incompressible materials the constitutive equa-
tions are only a function of the distortional component of the deformation. In
addition, the incompressibility constraint J = 1 has to be enforced explicitly.
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This is traditionally achieved by augmenting the variational Functional (8.24) with
a Lagrange multiplier term to give

ΠL(φ, p) = Π̂(φ) +
∫

V
p(J − 1) dV, (8.28)

where p has been used to denote the Lagrange multiplier in anticipation of the fact
that it will be identified as the internal pressure and the notation Π̂ implies that
the strain energy Ψ is now a function of the distortional component Ĉ of the right
Cauchy–Green tensor (see Section 6.5.1), that is,

Π̂(φ) =
∫

V
Ψ̂(C) dV −

∫
V

f0 · φ dV −
∫

∂V
t0 · φ dA; Ψ̂(C) = Ψ(Ĉ).

(8.29)

The stationary condition of the above functional with respect to φ and p will
be considered separately. Firstly the directional derivative of ΠL with respect to p

in the arbitrary direction δp is

DΠL(φ, p)[δp] =
∫

V
δp(J − 1) dV = 0. (8.30)

Hence, if this condition is satisfied for all functions δp, the incompressibility con-
straint J = 1 is ensured.

The derivative of (8.28) with respect to the motion in the direction of δv is
given as

DΠL(φ, p)[δv] = DΠ̂(φ)[δv] +
∫

V
pDJ [δv] dV = 0. (8.31)

Substituting Equation (8.29) and using Equation (4.76) for DJ [δv] and (6.51) for
the derivative of the second Piola–Kirchhoff stress gives, after some algebra, the
principle of virtual work as

DΠL(φ, p)[δv] =
∫

V

∂Ψ̂
∂C

: DC[δv] dV +
∫

V
Jp div δv dV − δWext(φ, δv)

(8.32a)

=
∫

V
S′ : DE[δv] dV +

∫
v
p div δv dv − δWext(φ, δv)

(8.32b)

=
∫

v
σ′ : δd dv +

∫
v
pI : δd dv − δWext(φ, δv) (8.32c)

=
∫

v
σ : δd dv − δWext(φ, δv) = 0, (8.32d)
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where Equation (8.11b) for the relevant push-forward operation and Equa-
tions (5.49a,b) and (5.50)b have been invoked. Observe that Equation (8.32c) clearly
identifies the Lagrange multiplier p as the physical internal (hydrostatic) pressure.

In the context of a Newton–Raphson solution process, the governing Equa-
tions (8.30) and (8.32) need to be linearized with respect to both variables p and φ

in the direction of respective increments Δp and u. Starting with Equation (8.30)
and using the linearization of J as given in Equation (4.76) we have

D2ΠL(φ, p)[δp, Δp] = 0; (8.33a)

D2ΠL(φ, p)[δp, u] =
∫

v
δp div u dv. (8.33b)

The linearization of Equation (8.32d) with respect to increments in p is easily
found using (8.32b) to give

D2ΠL(φ, p)[δv,Δp] =
∫

v
Δp div δv dv. (8.34)

The obvious symmetry between Equations (8.34) and (8.33b) leads to a symmetric
tangent matrix upon discretization.

Finally, for the purpose of obtaining the derivative of (8.32d) in the direction
of an increment u in the motion, it is convenient to revert to a material description
and rewrite Equation (8.32d) as

DΠL(φ, p)[δv] =
∫

V
S : DE[δv] dV − δWext(φ, δv); S = S′ + pJC−1.

(8.35)

The linearization of this expression in the direction of u is obtained in the same
manner as in Section 8.3 to give

D2ΠL(φ, p)[δv,u] =
∫

V
DE[δv] : C : DE[u] dV

+
∫

V
S : [(∇0u)T ∇0δv] dV, (8.36)

where the tangent modulus is given in Section 6.5.2 as,

C = 2
∂

∂C
(S′ + pJC−1) = Ĉ + Cp; (8.37a)

Ĉ = 2
∂S′

∂C
; (8.37b)

Cp = pJ [C−1 ⊗ C−1 − 2I ]. (8.37c)
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Similarly, in the current configuration Equation (8.36) becomes

D2ΠL(φ, p)[δv,u]=
∫

v
δd :c : ε dv +

∫
v
σ : [(∇u)T ∇δv] dv, (8.38)

where the spatial tangent modulus is

c = ĉ +c p; ĉ = J−1φ∗[Ĉ]; c p = p[I ⊗ I − 2i ]. (8.39)

In conclusion, the linearization of the governing Equations (8.30), (8.34), and (8.38)
is the combination of Equations (8.33), (8.34), and (8.38).

The above Lagrangian multiplier approach can be the basis for a successful
finite element implementation provided that the interpolations of φ and p are care-
fully chosen so as to avoid volumetric locking. It does, however, suffer from the
limitation of the presence of additional pressure variables. These two problems will
be considered in the next two sections, and the Lagrange multiplier approach will
not be pursued further.

8.6.3 Penalty Methods for Incompressibility

Penalty methods are an alternative to the Lagrangian multiplier approach to incom-
pressibility. There are two ways in which penalty methods can be introduced in
the formulation. A popular physically based approach, which conveniently elimi-
nates the pressure as an independent variable, is to consider the material as being
nearly incompressible, whereby a large value of the bulk modulus effectively pre-
vents significant volumetric changes. A second, less intuitive route is to perturb the
Lagrangian functional given in Equation (8.28) by the addition of a further “penalty’’
term that enables the pressure to eventually be artificially associated with the defor-
mation, thereby again eliminating the pressure variable. It will transpire that these
two methods lead to identical equations. The perturbed Lagrangian functional is

ΠP (φ, p) = ΠL(φ, p) −
∫

V

1
2κ

p2 dV, (8.40)

where κ is the penalty parameter and clearly ΠP → ΠL as κ → ∞.
The stationary condition of the Functional (8.40) with respect to p now becomes

DΠP (φ, p)[δp] =
∫

V
δp

[
(J − 1) − p

κ

]
dV = 0. (8.41)
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Consequently, enforcing this equation for all δp functions gives an equation artifi-
cially relating p and J as

p = κ(J − 1). (8.42)

Referring to Section 6.5.3, Equation (6.64), it is clear that this equation represents a
nearly incompressible material with the penalty number κ as the bulk modulus. The
use of this equation in a finite element context, either directly as a nearly incom-
pressible material or indirectly as a perturbed Lagrangian method, will lead to a
formulation involving only kinematic unknown variables.

The stationary condition of Functional (8.40) with respect to the motion is
identical to Equation (8.32) and gives the principle of virtual work, where now the
internal pressure in the Cauchy stresses can be evaluated using Equation (8.42) or, in
general for a nearly incompressible material, using Equation (6.63). In conclusion,
the linearized equilibrium equation is given directly by Equation (8.15), where, as
shown in Section 6.5.3, the tangent modulus is now

c = ĉ +c p +cκ; (8.43a)

ĉ = J−1φ∗[Ĉ]; Ĉ = 4
∂2Ψ̂

∂C∂C
= 2

∂S′

∂C
; (8.43b)

c p = p[I ⊗ I − 2i ]; (8.43c)

cκ = J
dp

dJ
I ⊗ I = κJI ⊗ I . (8.43d)

8.6.4 Hu-Washizu Variational Principle for Incompressibility

Neither the Lagrange multiplier method nor the penalty method as presented above
will result in a simple and efficient finite element formulation. This is because
the kinematically restricted motion implicit in the finite element discretization is,
in general, unable to distort while simultaneously meeting the incompressibility
requirement at each point of the body. This phenomenon manifests itself as a catas-
trophic artificial stiffening of the system known as volumetric locking. One common
practical solution to this problem involves the use of different discretizations for
p and φ in the Lagrange multiplier approach. Another ad hoc solution, associated
with the enforcement of incompressibility using nearly incompressible constitutive
equations, is to first separate the volumetric and distortional strain energy as

Π(φ) =
∫

V
Ψ̂(C) dV +

∫
V

U(J) dV − Πext(φ), (8.44)

and then underintegrate the volumetric term containing U(J).
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A formal framework for the solution of locking problems for nearly incom-
pressible materials that has potential for further developments is provided by a func-
tional that permits the use of independent kinematic descriptions for the volumetric
and distortional deformations. This can be achieved by introducing a three-field
Hu-Washizu type of variational principle as

ΠHW (φ, J̄ , p) =
∫

V
Ψ̂(C) dV +

∫
V

U(J̄) dV +
∫

V
p(J − J̄) dV − Πext(φ),

(8.45)

where J̄ is a new kinematic variable representing the dilatation or volume change
independently of the motion and p is a Lagrange multiplier enforcing the condition
that J̄ = J . The opportunity of using independent discretizations for φ and J̄ that
this functional affords will introduce sufficient flexibility to prevent locking.

The stationary conditions of Functional (8.45) with respect to φ, J̄ , and p will
yield the equilibrium equation and the constitutive and kinematic relationships asso-
ciated with the volumetric behavior. To this end, we find the directional derivative
of ΠHW in the direction δv as

DΠHW (φ, J̄ , p)[δv] =
∫

V

∂Ψ̂
∂C

: DC[δv]dV +
∫

V
pDJ [δv] dV

−DΠext(φ)[δv]. (8.46)

Repeating the algebra used in Equation (8.32), the stationary condition with respect
to φ gives the principle of virtual work as

DΠHW (φ, J̄ , p)[δv] =
∫

v
σ : δd dv − δWext(φ, δv) = 0. (8.47)

The stationary condition of the Functional (8.45) with respect to changes in J̄

gives a constitutive equation for p as

DΠHW (φ, J̄ , p)[δJ̄ ] =
∫

V

(
dU

dJ̄
− p

)
δJ̄ dV = 0. (8.48)

Similarly, the stationary condition of the Functional (8.45) with respect to p gives
a kinematic equation for J̄ as,

DΠHW (φ, J̄ , p)[δp] =
∫

V
(J − J̄)δp dV = 0 (8.49)
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Obviously, if δp and δJ̄ are arbitrary functions, Equation (8.49) gives J̄ = J

and Equation (8.48) gives p = dU/dJ . However, as explained, a finite element
formulation based on this procedure where the discretization of J̄ is based on the
same interpolation as φ confers no advantage, and volumetric locking will emerge.
This is usually prevented in a finite element context by judiciously choosing the
interpolating functions used for the volumetric variables J̄ , p, and their variations,
δJ̄ and δp. In particular, the simplest possible procedure involves using constant
interpolations for these variables over a given volume, typically a finite element.
The resulting method is known as the mean dilatation technique.

EXAMPLE 8.3: Hu-Washizu variational principle

Equation (8.45) is a Hu-Washizu type of variational equation in the sense that it incor-
porates three independent variables, namely, the motion, a volumetric strain field, and
its corresponding volumetric stress. It is, however, a very particular case as only the
volumetric stress and strain components are present in the equation. A more general
Hu-Washizu variational principle involving the motion, a complete stress field such
as the first Piola–Kirchhoff tensor P , and its associated strain F is given as,

ΠHW (φ,F ,P ) =
∫

V

Ψ(F ) dv +
∫

V

P : (∇0φ − F ) dV − Πext(φ),

where now F is an independent variable as yet unrelated to the deformation gradi-
ent of the motion ∇0φ. The stationary condition of this functional with respect to a
variation δv in motion φ gives the principle of virtual work as

DΠ(φ,F ,P )[δv] =
∫

V

P : ∇0δv dV − δWext(φ)[δv] = 0,

whereas the stationary conditions with respect to F and P give a constitutive equation
and a relationship between the strain and the motion as

DΠ(φ,F ,P )[δF ] =
∫

V

(
∂Ψ
∂F

− P

)
: δF dV = 0;

DΠ(φ,F ,P )[δP ] =
∫

V

(∇0φ − F ) : δP dV = 0.

These expressions are the weak forms equivalent to the hyperelastic relationship
P = ∂Ψ/∂F and the strain equation F = ∇0φ respectively.

8.6.5 Mean Dilatation Procedure

For convenience, the following discussion is based on an arbitrary volume V , which
after discretization will inevitably become the volume of each element.
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Assuming that p, J̄ and δp, δJ̄ are constant over the integration volume, Equa-
tions (8.48–8.49) yield

J̄ =
1
V

∫
V

JdV =
v

V
; (8.50a)

p =
dU

dJ̄

∣∣∣∣
J̄=v/V

. (8.50b)

Observe that Equation (8.50a) shows that the surrogate Jacobian J̄ is the integral
equivalent of the pointwise Jacobian J = dv/dV . A typical expression for the vol-
umetric strain energy has already been introduced in Section 6.5.3, Equation (6.61).
In terms of J̄ , this equation now becomes

U(J̄) =
1
2
κ(J̄ − 1)2 (8.51)

from which the mean pressure emerges as

p(J̄) = κ

(
v − V

V

)
(8.52)

At this juncture, it is convenient to acknowledge that the mean dilatation method
will be used in the finite element formulation presented in the next chapter. This
enables us to incorporate a priori the mean pressure derived above using the Hu-
Washizu functional directly into the principle of virtual work to give

δW (φ, δv) =
∫

v
σ : δd dv − δWext(φ, δv) = 0, σ = σ′ + pI ;

p =
dU

dJ̄

∣∣∣∣
J̄=v/V

, (8.53)

which can also be expressed in the initial configuration as

δW (φ, δv) =
∫

V
S : DE[δv] dV − δWext(φ, δv) = 0, S = S′ + pJC−1.

(8.54)
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Given that the pressure is constant over the volume, Equation (8.53) can also be
written as

δW (φ, δv) =
∫

v
σ′ : δd dv + p

∫
v

div δv dv − δWext(φ, δv)

=
∫

v
σ′ : δd dv + pv(div δv) − δWext(φ, δv) = 0, (8.55)

where the notation div implies the average divergence over the volume v, for
instance,

div δv =
1
v

∫
v

div δv dv. (8.56)

EXAMPLE 8.4: Mean deformation gradient method

Using the Hu-Washizu variational principle introduced in Example 8.3, it is possible
to derive a technique whereby the complete deformation gradient F , rather than just
its volumetric component, is taken as constant over the integration volume. Finite ele-
ment discretizations based on this type of technique are sometimes used to avoid shear
locking as well as volumetric locking. By assuming that P , F , and their variations
are constant in Example 8.3, the following equations are obtained for F and P :

F =
1
V

∫
V

∇0φ dV = ∇0φ;

P =
∂Ψ
∂F

∣∣∣∣
F=∇0φ

,

where ∇0 represents the mean (or average) gradient over the integration volume V .
With the help of these equations the principle of virtual work becomes

δW (φ, δv) = V P : ∇0δv − δWext(φ, δv) = 0.

Note that this can be written in terms of the corresponding second Piola–Kirchoff
tensor S = (∇0φ)−1P as

δW (φ)[δv] = V S : DE[δv] − δWext(φ, δv) = 0;

2DE[δv] = (∇0φ)T ∇0δv + (∇0δv)T ∇0φ,

or in terms of the Cauchy stress tensor vσ = V P (∇0φ)T as

δW (φ)[δv] = vσ : ∇δv − δWext(φ, δv) = 0; ∇δv = (∇0δv)(∇0φ)−1.
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As usual, it is now necessary to linearize the modified virtual work equation
in preparation for a Newton–Raphson iteration and the development of a tangent
matrix.Again, this linearization is first obtained using the initial configuration Equa-
tion (8.54) for which the integral limits remain constant. Disregarding the external
force component, this gives

DδW int(φ, δv)[u] =
∫

V
DE[δv] : 2

∂S

∂C
: DE[u] dV +

∫
V

S : DδĖ[u] dV

=
∫

V
DE[δv] : 2

(
∂S′

∂C
+ p

∂(JC−1)
∂C

)
: DE[u] dV

+
∫

V
(DE[δv] : JC − 1)Dp[u] dV +

∫
V

S : DδĖ[u] dV

=
∫

V
DE[δv] : (Ĉ + Cp) : DE[u] dV

+
∫

V
S : [(∇0u)T ∇0δv] + Dp[u]

∫
V
DE[δv] : JC−1 dV.

(8.57)

Observe that, via Equation (8.50b), the pressure is now an explicit function of the
current volume and thus of φ, and hence is subject to linearization in the direction
of u. With the help of Equations (4.129) and (8.56) together with Section 4.11.3 and
the usual push-forward operations (8.11), this equation is rewritten in the current
configuration as

DδW int(φ, δv)[u] =
∫

v
δd : (ĉ+c p) : ε dv+

∫
v
σ : [(∇u)T ∇δv] dv

+v(div δv)Dp[u]. (8.58)

The linearization of the pressure term follows from Equation (8.50b) as

Dp[u] =
d2U

dJ̄2

∣∣∣∣
J̄=v/V

D(v/V )[u]

=
1
V

d2U

dJ̄2

∣∣∣∣
J̄=v/V

∫
V

DJ [u] dV

=
1
V

d2U

dJ̄2

∣∣∣∣
J̄=v/V

∫
V

Jdiv u dV

= κ̄ div u; κ̄ =
v

V

d2U

dJ̄2

∣∣∣∣
J̄=v/V

, (8.59)
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from which, finally,

DδW int(φ, δv)[u] =
∫

v
δd : (ĉ +c p) : ε dv

+
∫

v
σ : [(∇u)T ∇δv] dv + κ̄v(div δv)(div u), (8.60)

where, for instance, for the volumetric potential shown in Equation (8.51),

κ̄ =
vκ

V
(8.61)

The discretization of the mean dilatation technique will be considered in the
next chapter.

Exercises

1. Show that the linearized internal virtual work can also be expressed as

DδW (φ, δv)[u] =
∫

V

(∇0δv) : A : (∇0u) dV ;A =
∂P

∂F
=

∂2Ψ
∂F∂F

,

where P is the first Piola–Kirchhoff tensor.
2. Show that for the case of uniform pressure over an enclosed fixed bound-

ary, the external virtual work can be derived from an associated potential as
δW p

ext(φ, δv) = DΠp
ext(φ)[δv], where

Πp
ext(φ) =

1
3

∫
a
px · n da.

Explain the physical significance of this integral.
3. Prove that for two-dimensional applications, Equation (8.23) becomes

DδW p
ext(φ, δv)[u] =

1
2

∫
Lη

pk ·
[(

∂u

∂η
× δv

)
+
(

∂δv
∂η

× u

)]
dη,

where k is a unit vector normal to the two-dimensional plane and η is a
parameter along the line Lη where the pressure p is applied.

4. Prove that by using a different cyclic permutation than that used to derive Equa-
tion (8.22), the following alternative form of Equation (8.23) can be found for
the case of an enclosed fixed boundary with uniform surface pressure:

DδW p
ext(φ, δv)[u] =

∫
Aξ

px ·
[(

∂δv
∂η

× ∂u

∂ξ

)
−
(

∂δv
∂ξ

× ∂u

∂η

)]
dξdη.
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5. Prove that by assuming a constant pressure interpolation over the integration
volume in Equation (8.41), a constant pressure technique equivalent to the mean
dilatation method is obtained.

6. A six-field Hu-Washizu type of variational principle with independent volu-
metric and deviatoric variables is given as

ΠHW (φ, J̄ ,F , p, P ′, γ) =
∫

V

Ψ̂(C) dV +
∫

V

U(J̄) dV +
∫

V

p(J−J̄) dV

+
∫

V

P ′ : (∇0φ−F ) dV +
∫

V

γ P ′ : F dV,

where C = F T F , J = det(∇0φ), and P ′ denotes the deviatoric compo-
nent of the first Piola–Kirchhoff stress tensor. Find the stationary conditions
with respect to each variable. Explain the need to introduce the Lagrange
multiplier γ. Derive the formulation that results from assuming that all the
fields except for the motion are constant over the integration volume.



C H A P T E R N I N E

DISCRETIZATION AND
SOLUTION

9.1 INTRODUCTION

The equilibrium equations and their corresponding linearizations have been estab-
lished in terms of a material or a spatial description. Either of these descriptions
can be used to derive the discretized equilibrium equations and their corresponding
tangent matrix. Irrespective of which configuration is used, the resulting quanti-
ties will be identical. It is, however, generally simpler to establish the discretized
quantities in the spatial configuration.

Establishing the discretized equilibrium equations is relatively standard, with
the only additional complication being the calculation of the stresses, which obvi-
ously depend upon nonlinear kinematic terms that are a function of the deformation
gradient. Deriving the coefficients of the tangent matrix is somewhat more involved,
requiring separate evaluation of constitutive, initial stress, and external force com-
ponents. The latter deformation-dependent external force component is restricted
to the case of enclosed normal pressure. In order to deal with near incompressibility
the mean dilatation method is employed.

Having discretized the governing equations, the Newton–Raphson solution
technique is reintroduced together with line search and arc length method
enhancements.

9.2 DISCRETIZED KINEMATICS

The discretization is established in the initial configuration using isoparametric ele-
ments to interpolate the initial geometry in terms of the particles Xa defining the
initial position of the element nodes as

X =
n∑

a=1

Na(ξ1, ξ2, ξ3)Xa, (9.1)

237
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Time = 0
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ξ2

ξ
φ

Time = t

FIGURE 9.1 Discretization.

where Na(ξ1, ξ2, ξ3) are the standard shape functions and n denotes the number
of nodes per element. It should be emphasized that during the motion, nodes and
elements are permanently attached to the material particles with which they were
initially associated. Consequently, the subsequent motion is fully described in terms
of the current position xa(t) of the nodal particles as (Figure 9.1)

x =
n∑

a=1

Naxa(t). (9.2)

Differentiating Equation (9.2) with respect to time gives the real or virtual
velocity interpolation as

v =
n∑

a=1

Nava; δv =
n∑

a=1

Naδva. (9.3)

Similarly, restricting the motion brought about by an arbitrary increment u to be
consistent with Equation (9.2) implies that the displacement u is also interpolated as

u =
n∑

a=1

Naua. (9.4)

The fundamental deformation gradient tensor F is interpolated over an element
by differentiating Equation (9.2) with respect to the initial coordinates to give, after
using Equation (2.135)a,

F =
n∑

a=1

xa ⊗ ∇0Na, (9.5)
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where ∇0Na = ∂Na/∂X can be related to ∇ξNa = ∂Na/∂ξ in the standard
manner by using the chain rule and Equation (9.1) to give

∂Na

∂X
=
(

∂X

∂ξ

)−T ∂Na

∂ξ
;

∂X

∂ξ
=

n∑
a=1

Xa ⊗ ∇ξNa. (9.6a,b)

Equations (9.5) and (9.6a,b)b are sufficiently fundamental to justify expansion
in detail in order to facilitate their eventual programming. To this effect, these
equations are written in an explicit matrix form as

F =

⎡⎢⎣F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤⎥⎦; FiJ =
n∑

a=1

xa,i
∂Na

∂XJ
; (9.7)

and,

∂X

∂ξ
=

⎡⎢⎣∂X1/∂ξ1 ∂X1/∂ξ2 ∂X1/∂ξ3

∂X2/∂ξ1 ∂X2/∂ξ2 ∂X2/∂ξ3

∂X3/∂ξ1 ∂X3/∂ξ2 ∂X3/∂ξ3

⎤⎥⎦;
∂XI

∂ξα
=

n∑
a=1

Xa,I
∂Na

∂ξα
.

(9.8)

From Equation (9.5), further strain magnitudes such as the right and left
Cauchy–Green tensors C and b can be obtained as

C = F T F =
∑
a,b

(xa · xb)∇0Na ⊗ ∇0Nb; CIJ =
3∑

k=1

FkIFkJ ; (9.9a,b)

b = FF T =
∑
a,b

(∇0Na · ∇0Nb)xa ⊗ xb; bij =
3∑

K=1

FiKFjK . (9.9c,d)

The discretization of the real (or virtual rate of deformation) tensor and the linear
strain tensor can be obtained by introducing Equation (9.3) into the definition of d

given in Equation (4.101) and Equation (9.4) into Equation (8.11a) to give

d =
1
2

n∑
a=1

(va ⊗ ∇Na + ∇Na ⊗ va); (9.10a)
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δd =
1
2

n∑
a=1

(δva ⊗ ∇Na + ∇Na ⊗ δva); (9.10b)

ε =
1
2

n∑
a=1

(ua ⊗ ∇Na + ∇Na ⊗ ua), (9.10c)

where, as in Equation (9.6a,b), ∇Na = ∂Na/∂x can be obtained from the deriva-
tives of the shape functions with respect to the isoparametric coordinates as

∂Na

∂x
=
(

∂x

∂ξ

)−T ∂Na

∂ξ
;

∂x

∂ξ
=

n∑
a=1

xa ⊗ ∇ξNa;
∂xi

∂ξα
=

n∑
a=1

xa,i
∂Na

∂ξα

(9.11a,b)

Although Equations (9.10) will eventually be expressed in a standard matrix form,
if necessary the component tensor products can be expanded in a manner entirely
analogous to Equations (9.6a,b) and (9.7).

EXAMPLE 9.1: Discretization

This simple example illustrates the discretization and subsequent calculation of key
shape function derivatives. Because the initial and current geometries comprise right-
angled triangles, these are easily checked.

X2,
 

x2

X1,
 

x1(4, 0)(0, 0)

(0, 3)
(2, 3)

(10, 3)

Time = t

Time = 0

1 2

3

3

1 2

ξ2
ξ2

ξ1

(10, 9)

ξ2

The initial X and current x nodal coordinates are

X1,1 = 0; X2,1 = 4; X3,1 = 0;

X1,2 = 0; X2,2 = 0; X3,2 = 3;

x1,1 = 2; x2,1 = 10; x3,1 = 10;

x1,2 = 3; x2,2 = 3; x3,2 = 9.

(continued)
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EXAMPLE 9.1: (cont.)

The shape functions and related derivatives are

N1 = 1 − ξ1 − ξ2

N2 = ξ1

N3 = ξ2

;
∂N1

∂ξ
=
[

−1
−1

]
;

∂N2

∂ξ
=
[

1
0

]
;

∂N3

∂ξ
=
[

0
1

]

Equations (9.1) and (9.6a,b)b yield the initial position derivatives with respect to the
nondimensional coordinates as

X1 = 4ξ1

X2 = 3ξ2
;

∂X

∂ξ
=
[

4 0
0 3

]
;
(

∂X

∂ξ

)−T

=
1
12

[
3 0
0 4

]
,

from which the derivatives of the shape functions with respect to the material coor-
dinate system are found as

∂N1

∂X
=

1
12

[
3 0
0 4

] [
−1
−1

]
= − 1

12

[
3
4

]
;

∂N2

∂X
=

1
12

[
3
0

]
;

∂N3

∂X
=

1
12

[
0
4

]
.

A similar set of manipulations using Equations (9.2) and (9.11a,b) yields the deriva-
tives of the shape functions with respect to the spatial coordinate system as

∂N1

∂x
=

1
24

[
3 0

−4 4

] [
−1
−1

]
= − 1

24

[
3
0

]
;

∂N2

∂x
=

1
24

[
3

−4

]
;

∂N3

∂x
=

1
24

[
0
4

]
.

EXAMPLE 9.2: Discretized kinematics

Following Example 9.1, the scene is set for the calculation of the deformation gradient
F using Equation (9.7) to give

FiJ = x1,i
∂N1

∂XJ
+ x2,i

∂N2

∂XJ
+ x3,i

∂N3

∂XJ
; i, J = 1, 2; F =

1
3

[
6 8
0 6

]
.

(continued)
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EXAMPLE 9.2: (cont.)

Assuming plane strain deformation, the right and left Cauchy–Green tensors can be
obtained from Equation (9.9a,b) as

C = F T F =
1
9

⎡⎣ 36 48 0
48 100 0
0 0 9

⎤⎦ ; b = FF T =
1
9

⎡⎣100 48 0
48 36 0
0 0 9

⎤⎦ .

Finally, the Jacobian J is found as

J = detF = det

⎛⎝1
3

⎡⎣ 6 8 0
0 6 0
0 0 3

⎤⎦⎞⎠ = 4.

9.3 DISCRETIZED EQUILIBRIUM EQUATIONS

9.3.1 General Derivation

In order to obtain the discretized spatial equilibrium equations, recall the spatial
virtual work Equation (5.27) given as the total virtual work done by the residual
force r as

δW (φ, δv) =
∫

v
σ : δd dv −

∫
v
f · δv dv −

∫
∂v

t · δv da. (9.12)

At this stage, it is easier to consider the contribution to δW (φ, δv) caused by a
single virtual nodal velocity δva occurring at a typical node a of element (e).
Introducing the interpolation for δv and δd given by Equations (9.3) and (9.10)
gives

δW (e)(φ, Naδva) =
∫

v(e)

σ : (δva ⊗ ∇Na)dv −
∫

v(e)

f · (Naδva) dv

−
∫

∂v(e)

t · (Naδva) da, (9.13)

where the symmetry of σ has been used to concatenate the internal energy term.
Observing that the virtual nodal velocities are independent of the integration and
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Equation (2.52b); that is, σ : (u ⊗ v) = u · σv for any vectors u,v, enables the
summation to be rearranged to give

δW (e)(φ, Naδva) = δva ·
(∫

v(e)

σ∇Na dv −
∫

v(e)

Naf dv −
∫

∂v(e)

Nat da

)
.

(9.14)

The virtual work per element (e) per node a can, alternatively, be expressed in terms

of the internal and external equivalent nodal forces T
(e)
a and F

(e)
a as

δW (e)(φ, Naδva) = δva · (T (e)
a − F (e)

a ), (9.15a)

where

T (e)
a =

∫
v(e)

σ∇Na dv; T
(e)
a,i =

3∑
j=1

∫
v(e)

σij
∂Na

∂xj
dv; (9.15b)

F (e)
a =

∫
v(e)

Naf dv +
∫

∂v(e)

Nat da. (9.15c)

In this equation the Cauchy stress σ is found from the appropriate constitu-
tive equation given in Chapter 6, which will involve the calculation of the left
Cauchy–Green tensor b = FF T ; for example, see Equations (6.29) or (6.55) and
Example 9.3.

EXAMPLE 9.3: Equivalent nodal forces T a

Building on the previous example, the calculation of the equivalent nodal forces
is now demonstrated. A compressible neo-Hookean material will be considered for
which μ = 3 and λ = 2, which, using Equation (6.29), yields the Cauchy stresses
(rounded for convenience) for this plane strain case as

σ =

⎡⎣σ11 σ12 0
σ21 σ22 0

0 0 σ33

⎤⎦ =
μ

J
(b − I) +

λ

J
(lnJ)I ≈

⎡⎣8 4 0
4 3 0
0 0 0.8

⎤⎦ .

(continued)
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EXAMPLE 9.3: (cont.)

From Equation (9.15b), the equivalent nodal internal forces are

Ta,i =
∫

v(e)

(
σi1

∂Na

∂x1
+ σi2

∂Na

∂x2

)
dv;

a = 1, 2, 3

i = 1, 2
;

T1,1 = −24t

T1,2 = −12t
;

T2,1 = 8t

T2,2 = 0
;

T3,1 = 16t;

T3,2 = 12t
;

where t is the element thickness. Clearly, these forces are in equilibrium.

The contribution to δW (φ, Naδva) from all elements e (1 to ma) containing
node a (e � a) is

δW (φ, Naδva) =
ma∑
e=1
e�a

δW (e)(φ, Naδva) = δva · (T a − F a), (9.16a)

where the assembled equivalent nodal forces are

T a =
ma∑
e=1
e�a

T (e)
a ; F a =

ma∑
e=1
e�a

F (e)
a . (9.16b,c)

Finally, the contribution to δW (φ, δv) from all nodes N in the finite element mesh is

δW (φ, δv) =
N∑

a=1

δW (φ, Naδva) =
N∑

a=1

δva · (T a − F a) = 0. (9.17)

Because the virtual work equation must be satisfied for any arbitrary virtual nodal
velocities, the discretized equilibrium equations, in terms of the nodal residual
force Ra, emerge as,

Ra = T a − F a = 0. (9.18)

Consequently, the equivalent internal nodal forces are in equilibrium with the
equivalent external forces at each node a = 1, 2, . . . , N .
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For convenience, all the nodal equivalent forces are assembled into single arrays
to define the complete internal and external forces T and F respectively, as well as
the complete residual force R, as

T =

⎡⎢⎢⎢⎣
T 1

T 2
...

T N

⎤⎥⎥⎥⎦ ; F =

⎡⎢⎢⎢⎣
F 1

F 2
...

F N

⎤⎥⎥⎥⎦ ; R =

⎡⎢⎢⎢⎣
R1

R2
...

RN

⎤⎥⎥⎥⎦ . (9.19)

These definitions enable the discretized virtual work Equation (9.17) to be rewrit-
ten as

δW (φ, δv) = δvT R = δvT (T − F) = 0, (9.20)

where the complete virtual velocity vector δvT = [δvT
1 , δvT

2 , . . . , δvT
N ].

Finally, recalling that the internal equivalent forces are nonlinear functions of
the current nodal positions xa and defining a complete vector of unknowns x as the
array containing all nodal positions as

x =

⎡⎢⎢⎢⎣
x1

x2
...

xN

⎤⎥⎥⎥⎦ (9.21)

enables the complete nonlinear equilibrium equations to be symbolically assem-
bled as

R(x) = T(x) − F(x) = 0. (9.22)

These equations represent the finite element discretization of the pointwise differ-
ential equilibrium Equation (5.16).

9.3.2 Derivation in Matrix Notation

The discretized equilibrium equations will now be recast in the more familiar
matrix-vector notation.* To achieve this requires a reinterpretation of the sym-
metric stress tensor as a vector comprising six independent components as

σ = [σ11, σ22, σ33, σ12, σ13, σ23]T . (9.23)

* Also known as Voigt notation.
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Similarly, the symmetric rate of deformation tensor can be re-established in a
corresponding manner as

d = [d11, d22, d33, 2d12, 2d13, 2d23]T , (9.24)

where the off-diagonal terms have been doubled to ensure that the product dT σ

gives the correct internal energy as,

∫
v
σ : d dv =

∫
v

dT σ dv (9.25)

The rate of deformation vector d can be expressed in terms of the usual B matrix
and the nodal velocities as

d =
n∑

a=1

Bava; Ba =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na

∂x1
0 0

0 ∂Na

∂x2
0

0 0 ∂Na

∂x3

∂Na

∂x2

∂Na

∂x1
0

∂Na

∂x3
0 ∂Na

∂x1

0 ∂Na

∂x3

∂Na

∂x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.26)

Introducing Equation (9.26) into Equation (9.25) for the internal energy enables
the discretized virtual work Equation (9.13) to be rewritten as

δW (φ, Naδva) =
∫

v(e)

(Baδva)T σ dv −
∫

v(e)

f · (Naδva) dv

−
∫

∂v(e)

t · (Naδva) da. (9.27)

Following the derivation given in the previous section leads to an alternative expres-
sion for the element equivalent nodal forces T

(e)
a for node a as

T (e)
a =

∫
v(e)

BT
a σ dv. (9.28)

Observe that because of the presence of zeros in the matrix Ba, Expression (9.15b)
is computationally more efficient than Equation (9.28).
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9.4 DISCRETIZATION OF THE LINEARIZED

EQUILIBRIUM EQUATIONS

Equation (9.22) represents a set of nonlinear equilibrium equations with the cur-
rent nodal positions as unknowns. The solution of these equations is achieved
using a Newton–Raphson iterative procedure that involves the discretization of
the linearized equilibrium equations given in Section 8.2. For notational conve-
nience the virtual work Equation (9.12) is split into internal and external work
components as

δW (φ, δv) = δWint(φ, δv) − δWext(φ, δv), (9.29)

which can be linearized in the direction u to give

DδW (φ, δv)[u] = DδWint(φ, δv)[u] − DδWext(φ, δv)[u], (9.30)

where the linearization of the internal virtual work can be further subdivided into
constitutive and initial stress components as

DδWint(φ, δv)[u] = DδWc(φ, δv)[u] + DδWσ(φ, δv)[u]

=
∫

v
δd :c : ε dv +

∫
v
σ : [(∇u)T ∇δv] dv. (9.31)

Before continuing with the discretization of the linearized equilibrium Equation
(9.30), it is worth reiterating the general discussion of Section 8.2 to inquire in
more detail why this is likely to yield a tangent stiffness matrix. Recall that Equa-
tion (9.15a), that is, δW (e)(φ, Naδva) = δva · (T (e)

a −F
(e)
a ), essentially expresses

the contribution of the nodal equivalent forces T
(e)
a and F

(e)
a to the overall equilib-

rium of node a. Observing that F
(e)
a may be position-dependent, linearization of

Equation (9.15c) in the direction Nbub, with Naδva remaining constant, expresses
the change in the nodal equivalent forces T

(e)
a and F

(e)
a , at node a, due to a change

ub in the current position of node b as

DδW (e)(φ, Naδva)[Nbub] = D(δva · (T (e)
a − F (e)

a ))[Nbub]

= δva · D(T (e)
a − F (e)

a )[Nbub]

= δva · K
(e)
ab ub. (9.32)

The relationship between changes in forces at node a due to changes in the current
position of node b is furnished by the tangent stiffness matrix K

(e)
ab , which is clearly

seen to derive from the linearization of the virtual work equation. In physical terms
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the tangent stiffness provides the Newton–Raphson procedure with the operator that
adjusts current nodal positions so that the deformation-dependent equivalent nodal
forces tend toward being in equilibrium with the external equivalent nodal forces.

9.4.1 Constitutive Component: Indicial Form

The constitutive contribution to the linearized virtual work Equation (9.31) for
element (e) linking nodes a and b is

DδW (e)
c (φ, Naδva)[Nbub]

=
∫

v(e)

1
2
(δva ⊗ ∇Na +∇Na ⊗ δva) :c :

1
2
(ub ⊗ ∇Nb +∇Nb ⊗ ub)dv.

(9.33)

In order to make progress it is necessary to temporarily resort to indicial
notation, which enables the above equation to be rewritten as

DδW (e)
c (φ, Naδva)[Nbub]

=
3∑

i,j,k,l=1

∫
v(e)

1
2

(
δva,i

∂Na

∂xj
+ δva,j

∂Na

∂xi

)
c ijkl

1
2

(
ub,k

∂Nb

∂xl
+ ub,l

∂Nb

∂xk

)
dv

=
3∑

i,j,k,l=1

δva,i

(∫
v(e)

∂Na

∂xj
c ijkl

∂Nb

∂xl
dv

)
ub,k

= δva · K
(e)
c,ab ub, (9.34)

where the constitutive component of the tangent matrix relating node a to node b

in element (e) is,

[Kc,ab]ij =
∫

v(e)

3∑
k,l=1

∂Na

∂xk
c ikjl

∂Nb

∂xl
dv; i, j = 1, 2, 3. (9.35)

EXAMPLE 9.4: Constitutive component of tangent matrix [Kc,ab]

The previous example is revisited in order to illustrate the calculation of the tan-
gent matrix component connecting nodes 2 to 3. Omitting zero derivative terms, the
summation given by Equation (9.35) yields

(continued)
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EXAMPLE 9.4: (cont.)

[Kc,23]11 =
(

1
8

)(
c 1112

)(1
6

)
−
(

1
6

)(
c 1212

)(1
6

)
(24t);

[Kc,23]12 =
(

1
8

)(
c 1122

)(1
6

)
−
(

1
6

)(
c 1222

)(1
6

)
(24t);

[Kc,23]21 =
(

1
8

)(
c 2112

)(1
6

)
−
(

1
6

)(
c 2212

)(1
6

)
(24t);

[Kc,23]22 =
(

1
8

)(
c 2122

)(1
6

)
−
(

1
6

)(
c 2222

)(1
6

)
(24t);

where t is the thickness of the “element. Substituting forc ijkl from Equations (6.40)
and (6.41) yields the stiffness” coefficients as

[Kc,23]11 = −2
3
λ′t; [Kc,23]12 =

1
2
μ′t; [Kc,23]21 =

1
2
μ′t;

[Kc,23]22 = −2
3
(λ′ + 2μ′)t;

where λ′ = λ/J and μ′ = (μ − λ lnJ)/J .

9.4.2 Constitutive Component: Matrix Form

The constitutive contribution to the linearized virtual work Equation (9.31) for ele-
ment (e) can alternatively be expressed in matrix notation by defining the small
strain vector ε in a similar manner to Equation (9.26) for d as

ε = [ε11, ε22, ε33, 2ε12, 2ε13, 2ε23]T ; ε =
n∑

a=1

Baua. (9.36a,b)

The constitutive component of the linearized internal virtual work – see Equa-
tion (9.31) – can now be rewritten in matrix-vector notation as

DδWc(φ, δv)[u] =
∫

V
δd : c : ε dv =

∫
v
δdT Dε dv, (9.37)

where the spatial constitutive matrix D is constructed from the components of
the fourth-order tensor c by equating the tensor product δd :c : ε to the matrix
product δdT Dε to give, after some algebra,
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D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 1111 c 1122 c 1133 c 1112 c 1113 c 1123

c 2222 c 2233 c 2212 c 2213 c 2223

c 3333 c 3312 c 3313 c 3323

c 1212 c 1213 c 1223

sym. c 1313 c 1323

c 2323

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.38)

In the particular case of a neo-Hookean material (see Equation (6.29)), D becomes

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ′ + 2μ′ λ′ λ′ 0 0 0

λ′ λ′ + 2μ′ λ′ 0 0 0

λ′ λ′ λ′ + 2μ′ 0 0 0

0 0 0 μ′ 0 0

0 0 0 0 μ′ 0

0 0 0 0 0 μ′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

λ′ =
λ

J
; μ′ =

μ − λ ln J

J
. (9.39)

Substituting for δd and ε from Equations (9.26) and (9.36a,b) respectively into
the right-hand side of Equation (9.37) enables the contribution from element (e)
associated with nodes a and b to emerge as

DδW (e)
c (φ, Naδva)[Nbub] =

∫
v(e)

(Baδva)T D(Bbub) dv

= δva ·
(∫

v(e)

BT
a DBb dv

)
ub. (9.40)

The term in brackets defines the constitutive component of the tangent matrix
relating node a to node b in element (e) as

K
(e)
c,ab =

∫
v(e)

BT
a DBb dv. (9.41)
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9.4.3 Initial Stress Component

Concentrating attention on the second term in the linearized equilibrium Equa-
tion (9.31), note first that the gradients of δv and u can be interpolated from
Equations (9.3–9.4) as

∇δv =
n∑

a=1

δva ⊗ ∇Na; (9.42a)

∇u =
n∑

b=1

ub ⊗ ∇Nb. (9.42b)

Introducing these two equations into the second term of Equation (9.31) and not-
ing Equation (2.52b), that is, σ : (u ⊗ v) = u · σv for any vectors u,v, enables
the initial stress contribution to the linearized virtual work Equation (9.31) for
element (e) linking nodes a and b to be found as

DδWσ(φ, Naδva)[Nbub] =
∫

v
σ : [(∇ub)T ∇δva] dv

=
∫

v(e)

σ : [(δva · ub)∇Nb ⊗ ∇Na] dv

= (δva · ub)
∫

v(e)

∇Na · σ∇Nb dv. (9.43)

Observing that the integral in Equation (9.43) is a scalar, and noting that δva · ub =
δva · Iub, the expression can be rewritten in matrix form as

DδWσ(φ, Naδva)[Nbub] = δva · K
(e)
σ,abub, (9.44a)

where the components of the so-called initial stress matrix K
(e)
σ,ab are

K
(e)
σ,ab =

∫
v(e)

(∇Na · σ∇Nb)I dv; (9.44b)

[K(e)
σ,ab]ij =

∫
v(e)

3∑
k,l=1

∂Na

∂xk
σkl

∂Nb

∂xl
δij dv; i, j = 1, 2, 3. (9.44c)
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EXAMPLE 9.5: Initial stress component of tangent matrix [Kσ,ab]

Using the same configuration as in Examples 9.1–9.4, a typical initial stress tangent
matrix component connecting nodes 1 and 2 can be found from Equation (9.44c) as

[Kσ,12] =
∫

v(e)

[
∂N1

∂x1

∂N1

∂x2

][
σ11 σ12

σ21 σ22

][
∂N2
∂x1

∂N2
∂x2

] [
1 0
0 1

]
dv

=
((

1
8

)
8
(

1
8

)
+
(

−1
8

)
4
(

−1
6

))[
1 0
0 1

]
24t

=
[
−1t 0

0 −1t

]
.

9.4.4 External Force Component

As explained in Section 8.5, the body forces are invariably independent of
the motion and consequently do not contribute to the linearized virtual work.
However, for the particular case of enclosed normal pressure discussed in Sec-
tion 8.5.2, the linearization of the associated virtual work term is given by
Equation (8.23) as

DδW p
ext(φ, δv)[u] =

1
2

∫
Aξ

p
∂x

∂ξ
·
[(

∂δv
∂η

× u

)
−
(

δv × ∂u

∂η

)]
dξdη

−1
2

∫
Aξ

p
∂x

∂η
·
[(

∂δv
∂ξ

× u

)
−
(

δv × ∂u

∂ξ

)]
dξdη.

(9.45)

Implicit in the isoparametric volume interpolation is a corresponding surface rep-
resentation in terms of ξ and η as (see Figure 9.1)

x(ξ, η) =
n∑

a=1

Naxa, (9.46)

where n is the number of nodes per surface element. Similar surface interpolations
apply to both δv and u in Equation (9.45). Considering, as before, the contribution to
the linearized external virtual work term, in Equation (9.30), from surface element
(e) associated with nodes a and b gives
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DδW p(e)
ext(φ, Naδva)[Nbub]

= (δva × ub) · 1
2

∫
Aξ

p
∂x

∂ξ

(
∂Na

∂η
Nb − ∂Nb

∂η
Na

)
dξdη

−(δva × ub) · 1
2

∫
Aξ

p
∂x

∂η

(
∂Na

∂ξ
Nb − ∂Nb

∂ξ
Na

)
dξdη

= (δva × ub) · kp,ab, (9.47)

where the vector of stiffness coefficients kp,ab is

kp,ab =
1
2

∫
Aξ

p
∂x

∂ξ

(
∂Na

∂η
Nb − ∂Nb

∂η
Na

)
dξdη

− 1
2

∫
Aξ

p
∂x

∂η

(
∂Na

∂ξ
Nb − ∂Nb

∂ξ
Na

)
dξdη. (9.48)

Equation (9.47) can now be reinterpreted in terms of tangent matrix components as

DδW
p(e)
ext (φ, Naδva)[Nbub] = δva · K

(e)
p,ab ub, (9.49a)

where the external pressure component of the tangent matrix is

K
(e)
p,ab = Ek

(e)
p,ab;

[
K

(e)
p,ab

]
ij

=
3∑

k=1

Eijk

[
k

(e)
p,ab

]
k
; i, j = 1, 2, 3; (9.49b)

where E is the third-order alternating tensor (Eijk = ±1 or 0, depending on the
parity of the ijk permutation).

EXAMPLE 9.6: External pressure component of tangent matrix [Kp,ab]

Consider the same triangle of Example 9.1 now representing a face on which pressure
p is applied. If the isoparametric coordinates are renamed ξ, η, the vectors ∂x/∂ξ and
∂x/∂η in the vector of stiffness coefficients given in Equation (9.48) are constant
and depend upon the geometry of the particular surface element, whereas the terms
in parentheses depend only on the element type. Noting that if a = b the terms in
parentheses are zero, the resulting simple integration yields

(continued)
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EXAMPLE 9.6: (cont.)

N1 = 1 − ξ − η; N2 = ξ; N3 = η

∂x

∂ξ
=

⎡⎣ 8
0
0

⎤⎦ ∂x

∂η
=

⎡⎣ 8
6
0

⎤⎦ ;

kp,12 =
1
2
p
∂x

∂ξ

(
− 1

6

)
+

1
2
p
∂x

∂η

(
− 1

3

)
;

kp,13 =
1
2
p
∂x

∂ξ

(
− 1

3

)
+

1
2
p
∂x

∂η

(
− 1

6

)
;

kp,23 =
1
2
p
∂x

∂ξ

(
− 1

6

)
+

1
2
p
∂x

∂η

(
+

1
6

)
.

Nonzero pressure stiffness submatrices are now found from Equation (9.49b) as

[Kp,12] = −p

2

⎡⎣ 0 0 −2
0 0 4
2 −4 0

⎤⎦ ; [Kp,13] = −p

2

⎡⎣0 0 −1
0 0 4
1 −4 0

⎤⎦ ;

[Kp,23] = −p

2

⎡⎣ 0 0 1
0 0 4

−1 −4 0

⎤⎦ .

9.4.5 Tangent Matrix

The linearized virtual work Equation (9.30) can now be discretized for element (e)
linking nodes a and b (see Equation (9.32) and Figure 9.2a), in terms of the total
substiffness matrix Kab obtained by combining Equations (9.35), (9.44a,b,c), and
(9.49a,b) to give

DδW (e)(φ, Naδva)[Nbub] = δva · K
(e)
ab ub; (9.50a)

K
(e)
ab = K

(e)
c,ab + K

(e)
σ,ab − K

(e)
p,ab. (9.50b)

The assembly of the total linearized virtual work can now be accomplished by
establishing (i) the contribution to node a from node b associated with all elements
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δva

ub ub

δvaδva

ba a a
b

(a) (b) (c)

FIGURE 9.2 Assembly of linearized virtual work.

(e) (1 to ma,b) containing nodes a and b (Figure 9.2(b)); (ii) summing these
contributions to node a from all nodes b = 1, na, where na is the number of
nodes connected to node a (Figure 9.2(c)); (iii) summing contributions from all
nodes a = 1, N . This assembly process is summarized as

(i) DδW (φ, Naδva)[Nbub] =
ma,b∑
e=1
e�a,b

DδW (e)(φ, Naδva)[Nbub]; (9.51a)

(ii) DδW (φ, Naδva)[u] =
na∑
b=1

DδW (φ, Naδva)[Nbub]; (9.51b)

(iii) DδW (φ, δv)[u] =
N∑

a=1

DδW (φ, Naδva)[u]. (9.51c)

This standard finite element assembly procedure can alternatively be expressed
using the complete virtual velocity vector given in Equation (9.20) together with the
corresponding nodal displacements, uT = [uT

1 ,uT
2 , . . . ,uT

N ], and the assembled
tangent stiffness matrix K to yield

DδW (φ, δv)[u] = δvT Ku, (9.52a)

where the tangent stiffness matrix K is defined by assembling the nodal compo-
nents as

K =

⎡⎢⎢⎢⎢⎣
K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

. . .
...

KN1 KN2 · · · KNN .

⎤⎥⎥⎥⎥⎦ . (9.52b)
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9.5 MEAN DILATATION METHOD FOR

INCOMPRESSIBILITY

The standard discretization presented above is unfortunately not applicable to sim-
ulations involving incompressible or nearly incompressible three-dimensional or
plain strain behavior. It is well known that without further development such
a formulation is kinematically overconstrained, resulting in the overstiff phe-
nomenon known as volumetric locking. These deficiencies in the standard for-
mulation can be overcome using the three-field Hu-Washizu variational approach
together with an appropriate distinction being made between the discretization
of distortional and volumetric components. The resulting independent volumet-
ric variables p and J̄ can now be interpolated either continuously or discontin-
uously across element boundaries. In the former case, new nodal unknowns are
introduced into the final solution process, which leads to a cumbersome formu-
lation that will not be pursued herein. In the latter case, the volumetric variables
p and J̄ pertain only to an element and can be eliminated at the element level.
In such a situation, the simplest discontinuous interpolation is to make p and J̄

constant throughout the element. This is the so-called mean dilatation technique
discussed in Section 8.6.5. Observe, however, that for simple constant stress ele-
ments such as the linear triangle and tetrahedron, the mean dilatation method coin-
cides with the standard formulation and therefore suffers the detrimental locking
phenomenon.

9.5.1 Implementation of the Mean Dilatation Method

Recall from Chapter 8, Section 8.6.5, that the mean dilatation approach for a given
volume v leads to a constant pressure over the volume, as indicated by Equa-
tions (8.50a–b). When this formulation is applied to each element (e) in a finite
element mesh the pressure becomes constant over the element volume. In particu-
lar, assuming for instance that the potential shown in Equation (8.51) is used, the
uniform element pressure is given as

p(e) = κ
v(e) − V (e)

V (e) , (9.53)

where V (e) and v(e) are the initial and current element volumes.
The internal equivalent nodal forces for a typical element (e) are given by

Equation (9.15b), where now the Cauchy stress is evaluated from

σ = σ′ + p(e)I , (9.54)
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and the deviatoric stress σ′ is evaluated using the appropriate constitutive equation
given by Equation (6.55) or (6.107).

Continuing with the discretization, recall the modified linearized virtual work
Equation (8.60) which for an element (e) is

DδW
(e)
int (φ, δv)[u] =

∫
v(e)

δd :c : ε dv +
∫

v(e)

σ : [(∇u)T ∇δv] dv

+ κ̄v(e)(div u)(div δv); κ̄ =
κv(e)

V (e) , (9.55)

where the elasticity tensor isc = ĉ +c p and ĉ is the distortional component that
depends upon the material used, andc p is given by Equation (6.59b) as

c p = p(I ⊗ I − 2i ). (9.56)

The average divergences are now redefined for an element (e) as

div u =
1

v(e)

∫
v(e)

div u dv =
1

v(e)

∫
v(e)

( n∑
a=1

ua · ∇Na

)
dv; (9.57a,b)

div δv =
1

v(e)

∫
v(e)

div δv dv =
1

v(e)

∫
v(e)

( n∑
a=1

δva · ∇Na

)
dv. (9.57c,d)

Discretization of the first two terms in Equation (9.55) is precisely as given in the
previous section, but the final dilatation term needs further attention. For element
(e) the contribution to the linearized internal virtual work related to the dilatation
and associated, as before, with nodes a and b is

DδW (e)
κ (φ, Naδva)[Nbub]

=
κ

V (e)

(∫
v(e)

δva · ∇Na dv

)(∫
v(e)

ub · ∇Nb dv

)
= δva ·

[
κ

V (e)

(∫
v(e)

∇Na dv

)
⊗
(∫

v(e)

∇Nb dv

)]
ub

= δva · K
(e)
κ,ab ub, (9.58)

where the dilatational tangent stiffness component is obtained in terms of the
average Cartesian derivatives of the shape functions as

K
(e)
κ,ab = κ̄v(e)∇Na ⊗ ∇Nb ; ∇Na =

1
v(e)

∫
v(e)

∇a dv. (9.59a,b)
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The complete discretization of Equation (9.55) can now be written in terms of the
total element tangent substiffness matrix as

K
(e)
ab = K

(e)
,̧ab + K

(e)
σ,ab + K

(e)
κ,ab, (9.60)

into which the surface pressure component K
(e)
p,ab (see Equation (9.50)) may, if

appropriate, be included. Assembly of the complete linearized virtual work and
hence the tangent matrix follows the procedure given in Equations (9.51–9.53).

9.6 NEWTON--RAPHSON ITERATION AND SOLUTION

PROCEDURE

9.6.1 Newton–Raphson Solution Algorithm

In the previous sections it was shown that the equilibrium equation was discretized
as δW (φ, δv) = δvT R, whereas the linearized virtual work term is expressed
in terms of the tangent matrix as DδW (φ, δv)[u] = δvT Ku. Consequently, the
Newton–Raphson equation δW (δv,φk) + DδW (φk, δv)[u] = 0 given in Equa-
tion (8.2) is expressed in a discretized form as

δvT Ku = −δvT R. (9.61)

Because the nodal virtual velocities are arbitrary, a discretized Newton–Raphson
scheme is formulated as

Ku = −R(xk); xk+1 = xk + u. (9.62)

Although it is theoretically possible to achieve a direct solution for a given load
case, it is however more practical to consider the external load F as being applied
in a series of increments as

F =
l∑

i=1

ΔFi, (9.63)

where l is the total number of load increments. Clearly, the more increments taken,
the easier it becomes to find a converged solution for each individual load step.
Observe that in the case of a hyperelastic material the final solution is independent
of the manner in which the load increments are applied. If, however, the material
is not hyperelastic, this conclusion may not hold.
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An outline of the complete solution algorithm is shown in Box 9.1.

BOX 9.1: Solution Algorithm

• INPUT geometry, material properties and solution parameters
• INITIALIZE F = 0, x = X, R = 0
• LOOP over load increments

• FIND ΔF using (9.15c)
• SET F = F + ΔF
• SET R = R − ΔF
• DO WHILE (‖R‖/‖F‖ > tolerance)

• FIND K using (9.50b)
• SOLVE Ku = −R
• UPDATE x = x + u
• FIND F (e), b(e) and σ(e) using (9.5), (9.9a,b,d) and typically (6.29)
• FIND T using (6.15b)
• FIND R = T − F

• ENDDO
• ENDLOOP

Remark 9.1: By comparing Equation (9.62) with the example given in Sec-
tion 2.3.4 relating to the linearization of a system of algebraic equations, it is
evident that the tangent stiffness matrix can be found directly as

K =
∂R
∂x

; Kij =
∂Ri

∂xj
; i, j = 1, ndof, (9.64)

where ndof is the number of degrees of freedom in the problem. For some sit-
uations, such as finite deformation thin shell analysis, where the discretization
of the kinematic quantities is very much algorithm-dependent, such a direct
approach, though tedious, may be the only method of obtaining the tangent
matrix coefficients.

9.6.2 Line Search Method

The Newton–Raphson process is generally capable of reaching the convergence of
the equilibrium equations in a small number of iterations. Nevertheless, during the
course of complex deformation processes, situations may occur where the straight
application of the Newton–Raphson method becomes insufficient. A powerful
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technique often used to improve the convergence rate is the line search method.
This technique consists of interpreting the displacement vector u obtained from
Equation (9.62) as an optimal direction of advance toward the solution but allowing
the magnitude of the step to be controlled by a parameter η as

xk+1 = xk + ηu. (9.65)

The value of η is normally chosen so that the total potential energy, Π(η) =
Π(xk + ηu), at the end of the iteration is minimized in the direction of u. This is
equivalent to the requirement that the residual force at the end of each iteration,
that is, R(xk + ηu), is orthogonal to the direction of advance u. This yields a scalar
equation for η as (Figure 9.3)

R(η) = uT R(xk + ηu) = 0. (9.66)

Because of the extreme nonlinearity of the function R(η), Condition (9.66) is too
stringent and in practice it is sufficient to obtain a value of η such that

|R(η)| < ρ|R(0)|, (9.67)

where, typically, a value of ρ = 0.5 is used. Under normal conditions, the value
η = 1, which corresponds to the standard Newton–Raphson method, automati-
cally satisfies Equation (9.67), and therefore few extra operations are involved.
Occasionally, this is not the case, and a more suitable value of η must be
obtained. For this purpose it is convenient to approximate R(η) as a quadratic
in η. To achieve this requires the knowledge of the value R(0), together with

η1

η1

1

1

(a) (b)

η η

R R

R(1)

R(1)R(0)R(0)

FIGURE 9.3 Quadratic line search.
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the derivative dR/dη at η = 0, which, recalling Remark 9.1, is obtained from
Equation (9.66) as

dR

dη
= uT ∂R

∂x

∣∣∣∣
x=xk

u = uT K(xk)u = −uT R(xk) = −R(0); (9.68)

and, finally, a third value, which typically is the standard value of the residual force
for which η = 1, as

R(1) = uT R(xk + u). (9.69)

The quadratic approximation thus obtained with these coefficients gives

R(η) ≈ (1 − η)R(0) + R(1)η2 = 0, (9.70)

which yields a value for η as

η =
α

2
±

√(
α

2

)2

− α; α =
R(0)
R(1)

. (9.71)

If α < 0, the square root is real and the current value for η emerges as

η1 =
α

2
+

√(
α

2

)2

− α. (9.72)

Alternatively, if α > 0 (see Figure 9.3(b)), then η can be simply obtained by using
the value that minimizes the quadratic function, that is, η1 = α/2. Within each
(DO WHILE) iteration, the quadratic approximation procedure is repeated with the
three values, R(0), R′(0), and R(η1), until Equation (9.67) is satisfied.

9.6.3 Arc-Length Method

Although the line search method will improve the convergence rate of the Newton–
Raphson method, it will not enable the solution to traverse the so-called limit points
on the equilibrium path. Figure 9.4(a) shows two such limit points A and B on
an example of snap-back behavior . If the load is incremented, the solution will
experience convergence problems in the neighborhood of A and may jump to the
alternative equilibrium position A′. In many cases the equilibrium path can be fol-
lowed beyond A by prescribing a characteristic displacement and calculating the
load as the corresponding reaction. In Figure 9.4(a) this technique would enable
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FIGURE 9.4 (a)Snap-back; and (b) Spherical arc length method.

the solution to progress to the neighborhood of the limit point B, but, again, the
solution is likely to jump to point B′.

Various ad hoc schemes combining load and displacement incrementation have
been devised to deal with limit point problems, but these have been superseded by
arc length methods that constrain the iterative solution to follow a certain route
toward the equilibrium path. This is achieved by controlling the magnitude of the
external loads by a parameter λ so that the equilibrium equations become

R(x, λ) = T(x) − λF = 0, (9.73)

where F is a representative equivalent nodal load. The value of λ is now allowed
to vary during the Newton–Raphson iteration process by imposing an additional
constraint equation. As a consequence of the proportional loading, load increment i
is defined by an increment in the value of λ over the value at the end of the previous
load increment i − 1 as

ΔFi = ΔλF; Δλ = λ − λi−1. (9.74a,b)

Similarly, the total change in position over the load increment is denoted as Δx,
that is,

Δx = x − xi−1. (9.75)

A number of arc length methods have been proposed by imposing different
constraint equations to evaluate the additional unknown λ. A robust candidate is
the spherical arc length method in which the additional constraint equation is

ΔxT Δx + Δλ2ψ2F
T
F = s2. (9.76)
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Figure 9.4(b) illustrates this equation, where the constant s can be thought of as the
magnitude of the generalized vector:

s =
[

Δx
ΔλψF

]
, (9.77)

which defines a generalized sphere, which is the surface upon which the iterative
solution is constrained to move as convergence toward the equilibrium path pro-
gresses. The term ψ2 is a scaling factor that, in principle at least, renders (9.76)
dimensionally consistent.

The Newton–Raphson process is now established by linearizing Equa-
tion (9.73), taking into account the possible change in λ, to give a set of linear
equations at iteration k as

R(xk, λk) + K(xk)u − γF = 0, (9.78a)

where u represents the iterative change in position and γ denotes the iterative change
in λ as

xk+1 = xk + u; Δxk+1 = Δxk + u; (9.78b)

λk+1 = λk + γ; Δλk+1 = Δλk + γ. (9.78c)

Solving the above equations gives the iterative displacements u in terms of the, as
yet, unknown parameter change γ and the auxiliary displacements uR and uF as

u = uR + γuF ; uR = K(xk)−1R(xk, λk); uF = −K(xk)−1F.

(9.79a,b,c)

In (9.78), u and γ must be such that the constraint Equation (9.76) remains satisfied,
hence

(Δxk + u)T (Δxk + u) + (Δλk + γ)2ψ2F
T
F = s2. (9.80)

Expanding this equation using (9.76) and (9.79a,b,c) gives a quadratic equation for
the unknown iterative load parameter change γ as

a1γ
2 + a2γ + a3 = 0, (9.81a)

where

a1 = uT
F uF + ψ2F

T
F; (9.81b)
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a2 = 2uT
F (Δxk + uR) + 2Δλkψ

2F
T
F; (9.81c)

a3 = uT
R(2Δxk + uR) + ΔxT

k Δxk − s2. (9.81d)

There are two solutions γ(1) and γ(2) to (9.81a), which when substituted into
(9.79a,b,c), (9.78b,c), and (9.76) give two revised generalized vectors s(1)

k+1 and

s(2)
k+1. The correct parameter, γ(1) or γ(2), is that which gives the minimum “angle"

θ between sk and s(j)
k+1 where θ is obtained from

cos θ(j) =
sT
k s(j)

k+1

s2 ; sk =
[

Δxk

ΔλkψF

]
; s(j)

k+1 =
[

Δxk + u(j)

(Δλk + γ(j))ψF

]
.

(9.82)

In practice, where many degrees of freedom exist, the scaling factor ψ is taken
as zero, or, alternatively, if the representative load F is normalized and ψ = 1, the
second term in the constraint Equation (9.76) reduces to Δλ2.

Exercises

1. Prove that the equivalent internal nodal forces can be expressed with respect
to the initial configuration as

T a =
∫

V (e)

FS∇0Na dV,

and then validate this equation by recalculating the equivalent nodal forces
found in Example 9.3.

2. Prove that the initial stress matrix can be expressed with respect to the initial
configuration as

K
(e)
σ,ab =

∫
V (e)

(∇0Na · S∇0Nb)I dV,

and then validate this equation by recalculating the initial stress matrix Kσ,12

found in Example 9.5.
3. Show that the constitutive component of the tangent matrix can be expressed

at the initial configuration as

[
K

(e)
c,ab

]
ij

=
3∑

I,J,K,L=1

∫
V (e)

FiI
∂Na

∂XJ
CIJKL

∂Nb

∂XK
FjL dV.
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4. With the help of Exercise 8.3, derive a two-dimensional equation for the exter-
nal pressure component of the tangent matrix Kp for a line element along an
enclosed boundary of a two-dimensional body under uniform pressure p.

5. Recalling the line search method discussed in Section 9.6.2, show that mini-
mizing Π(η) = Π(xk +ηu) with respect to η gives the orthogonality condition

R(η) = uT R(xk + ηu) = 0.



C H A P T E R T E N

COMPUTER IMPLEMENTATION

10.1 INTRODUCTION

We have seen in the previous chapters that the solution to the nonlinear equilibrium
equations is basically achieved using the Newton–Raphson iterative method. In
addition, in a finite element context it is advisable to apply the external forces in a
series of increments. This has the advantage of enhancing the converging properties
of the solution and, where appropriate, provides possible intermediate equilibrium
states. Moreover, for path dependent materials such as those exhibiting plasticity,
these intermediate states represent the loading path which needs to be accurately
followed. Furthermore, it is clear that the two fundamental quantities that facili-
tate the Newton–Raphson solution are the evaluation of the residual force and the
tangent matrix. In this chapter we shall describe the FORTRAN implementation of
the solution procedure in the teaching program FLagSHyP, (Finite element Large
Strain Hyperelasto-plastic Program).

It is expected that the reader already has some familiarity with the computer
implementation of the finite element method in the linear context. Consequently,
this chapter will emphasize those aspects of the implementation that are of particular
relevance in the nonlinear finite deformation context. In this respect, it is essential
to understand two crucial routines. Firstly, the master routine that controls the over-
all organization of the program and, secondly, the subroutine elemtk. This latter
routine computes the equivalent nodal forces due to internal stress and the main
components of the tangent stiffness matrix. Consequently, it provides a vehicle for
examining those aspects of the computation that are particular to finite deforma-
tion analysis. Other routines described are the subroutine bpress, which evaluates
the equivalent nodal forces due to surface pressure, and the corresponding tangent
matrix components Kp andksigma, which computes and assembles the initial stress
matrix Kσ. In addition, the routines associated with elasto-plastic behavior will also

266
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be described, namely trlcg, which calculates the trial left Cauchy–Green tensor;
yfunc17, which evaluates the yield function; radialrtn, which implements the
radial return algorithm; and newstate, which re-evaluates the plastic left Cauchy–
Green tensor after the return of the Kirchhoff stresses to the yield surface and the
re-evaluation of the stretches. Routines associated with the three-dimensional truss
element truss2 are not described as these are transparent in their replication of the
equations in the text. The remaining routines in the program are either relatively
similar to standard finite element elasticity codes or are a direct implementation of
equations contained in the book.

The program description includes user instructions, a dictionary of variables
and subroutines, and sample input and output for a few typical examples. The pro-
gram can deal with a number of two-dimensional and three-dimensional elements
together with a variety of compressible and nearly incompressible hyperelastic
constitutive equations including simple Von Mises hyperelastic–plastic behavior.
It can be obtained, together with sample data, as a download from the Web site:
www.flagshyp.com. Alternatively, it can be obtained by e-mail request to the
authors j.bonet@swansea.ac.uk or r.d.wood@swansea.ac.uk.

10.2 USER INSTRUCTIONS

The input file required by FLagSHyP is described below. The file is free-formatted,
so items within a line are simply separated by commas or spaces.

Input Lines Comments

1-title(1:80) 1 Problem title

2-eltype(1:6) 1 Element type (see note 1)

3-npoin 1 Number of mesh points

4-ip,icode(ip), npoin Coordinate data:
(x(i,ip),i=1,ndime) ip: node number

icode(ip): boundary code
(see note 2)

x(i,ip): x, y, z coordinates
ndime: number of dimensions

5-nelem 1 Number of elements

6-ie,matno(ie), nelem Topology data:
(lnods(i,ie), i=1, nnode) ie: element number

matno(ie): material number
lnods(i,ie): nodal connectivities
nnode: number of nodes per

element
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7-nmats 1 Number of different materials

8-im,matyp(im) 2×nmats Material data:
im: material number
matyp(im): constitutive

equation type
props(1,im), props(i,im): properties
props(2,im),... (see note 3)

9-nplds,nprs,nbpel, 1 Loading data:
(gravt(i),i=1,ndime) nplds: number of loaded nodes

nprs: number of non-zero
individual prescribed
displacements

nbpel: number of line or surface
elements with applied
pressure

gravt: gravity vector

10-ip,(force(i), nplds Point loads:
i=1,ndime) ip: node number

force: force vector

11-ip,id,presc nprs Prescribed displacements:
ip: node number
id: spatial direction
presc: total nominal prescribed

displacement

12-je,(lbnod(i,ie),i=1, nbpel Pressure loads:
nbnod), press ie: surface element number

lbnod(i,ie): nodal connectivities
nbnod: number of nodes

per element
press: nominal pressure

(see note 4)

13-nincr,xlmax,dlamb, 1 Solution control parameters:
miter,cnorm,searc, nincr: number of load/
arcln,incout,itarget displacement
nwant, iwant increments

xlmax: maximum value of load-
scaling parameter

dlamb: load parameter increment
miter: maximum allowed

number of iteration
per increment

cnorm: convergence tolerance
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searc: line-search parameter
(if 0.0 not in use)

arcln: arc-length parameter
(if 0.0 not in use)

incout: output counter
(e.g. for every 5th
increment, incout=5)

itarget: target iterations per increment
(see note below)

nwant: single output node
(0 if not used)

iwant: output degree of freedom at
nwant (0 if not used)
(see note 5)

Note 1: The following element types are recognized (see also Section 10.4 for
more details about these elements):
truss2: 2-noded truss;
tria3: 3-noded linear triangle;
tria6: 6-noded quadratic triangle;
quad4: 4-noded bilinear quadrilateral;
tetr4: 4-noded linear tetrahedron;

tetr10: 10-noded quadratic tetrahedron;
hexa8: 8-noded trilinear hexahedron.

Different element types cannot be mixed in a mesh. Given the element
name the program automatically sets the number of nodes per element
(nnode), the number of dimensions (ndime), and the number of Gauss
points (ngaus). It also identifies the associated type of surface or line
element for pressure loads and sets the corresponding number of nodes
per element (nbnod) and Gauss points (ngaub).

Note 2: The boundary codes are as follows:
0: free;
1: x prescribed;
2: y prescribed;
3: x, y prescribed;
4: z prescribed;
5: x, z prescribed;
6: y, z prescribed;
7: x, y, z prescribed.
Prescribed degrees of freedom are assumed to be fixed (that is, no dis-
placement) unless otherwise prescribed to be different from zero in input
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items 9 and 11. If a displacement is imposed in input items 9 and 11,
the corresponding degree of freedom must have already been indicated as
prescribed in input item 4.

Note 3: The following constitutive equations have been implemented (see also
Section 10.6):
1: plane strain or three-dimensional compressible neo-Hookean;
2: one-dimensional stretch-based hyperelastic plastic (truss2 only);
3: plane strain or three-dimensional hyperelastic in principal directions;
4: plane stress hyperelastic in principal directions;
5: plane strain or three-dimensional nearly incompressible neo-

Hookean;
6: plane stress incompressible neo-Hookean;
7: plane strain or three-dimensional nearly incompressible hyperelas-

ticity in principal directions;
8: plane stress incompressible hyperelasticity in principal directions;
17: plane strain or three-dimensional nearly incompressible hyperelastic

plastic in principal directions.

The corresponding list of properties to be read in Item 8* are shown in the
following table in which ρ is the density in the reference configuration,
λ and μ are the Lamé coefficients, κ = λ + 2μ/3 is the bulk modulus
(see footnote), and h is the thickness for plane stress cases. E is Young’s
modulus, ν is Poisson’s ratio, and area is the initial cross-sectional area.
τy and H are the yield stress and hardening parameter respectively.

Type props(1) props(2) props(3) props(4) props(5) props(6)

1 ρ μ λ – – –

2 ρ E ν area τy H

3 ρ μ λ – – –

4 ρ μ λ h – –

5 ρ μ κ – – –

6 ρ μ h – – –

7 ρ μ κ – – –

8 ρ μ h – – –

17 ρ μ λ – τy H

* For Material 17, only ρ, μ, λ, τy , and H are entered. κ is calculated by the program and stored in props(4).
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Note 4: For surface elements the direction of positive pressure is given by the right-
hand screw rule following the surface element numbering. For line ele-
ments the positive pressure is at 90◦ turning anticlockwise to the direction
of increasing node numbering.

Note 5: Typically, a nonlinear structural analysis solution is carried out in a num-
ber of incremental steps, incrm=1,nincr, where nincr is the chosen
maximum number of steps.

The applied loads can be point forces, pressure forces or even pre-
scribed displacements. Any input value of these items is nominal and
will be multiplied by the load parameter increment dlamb. The nominal
load multiplied by dlamb is called an increment in load, ΔF (or Δu for
prescribed displacements).

Typically, at each load step incrm, the applied load is increased by an
amount equal to ΔF. This means that the nominal load has been multiplied
by lambda=incrm×dlamb to give the actual load F, where lambda is
called the load-scaling parameter.

If arc-length control is employed then lambda is controlled indirectly,
see Section 9.6.3. A positive value of arcln will produce a variable arc
length the value of which is determined by the desired number of itera-
tions per increment itarget. A negative value (simply as an indicator)
for arcln will provide a constant arc length. In this latter case, some
experimentation with values will be necessary. If the arc-length option is
not to be used, input arcln = 0 and itarget = 0.

There is an additional control item called xlamb which is the max-
imum value of the load-scaling parameter, and the program will stop
when (incrm×dlamb)>xlamb, even if incrm<nincr. Alternatively, the
program will stop when incrm=nincr even if (nincr×dlamb)<xlamb.

At each load step the Newton–Raphson iteration attempts to achieve
equilibrium within a maximum allowed number of iterations input as
miter. Equilibrium is achieved when the residual force ||R|| < cnorm,
where cnorm is the convergence tolerance. cnorm should be about
1.0E-06.

Convergence toward equilibrium can be improved by using the line
search option which minimizes the residual force in the direction of the
Newton–Raphson iterative change in the position of the structure. Line
search is activated and controlled by the parameter searc which should
have a value of about 0.5. This cannot be used in conjunction with the
arc-length method.

To facilitate easy plotting of load displacement graphs, output from a
single node and single degree of freedom (at that node) can be specified.
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g = 9.8

0.025

y

0.015

x

4

2

0.02

1.2

3.4

98

65

32

0.25

Type 6

3
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1

1

3

1

4

7

Type 4

FIGURE 10.1 Simple two-dimensional example.

Parameter nwant specifies the node and iwant the degree of freedom.
The output is in a file always called flag.out which contains the incre-
ment number, the coordinate relating to the degree of freedom, the force
relating to the degree of freedom, the current value of xlamb, and (if used)
the current arc-length value arcln.

The somewhat contrived example shown in Figure 10.1 has been chosen to illus-
trate as many diverse features of these input instructions as possible. The required
input file is listed in Box 10.1. Note that point, gravity and pressure loads, and
prescribed displacements are all subject to the same incrementation in the solution
procedure.

BOX 10.1: Input File for Example in Figure 10.1

2-D Example quad4
9
1 3 0.0 0.0
2 2 1.0 0.0
3 3 2.0 0.0
4 0 0.0 1.0
5 0 1.0 1.0
6 0 2.0 1.0
7 0 0.0 2.0
8 3 1.0 2.0
9 0 2.0 2.0
4
1 1 1 2 5 4
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2 2 6 5 2 3
3 1 5 8 7 4
4 2 5 6 9 8
2
1 4
1.0 100. 100. 0.1
2 6
1.0 100. 0.1
1 3 3 0.0 −9.8
9 1.2 3.4
3 1 0.02
2 2 −0.025
3 2 −0.015
1 8 7 0.25
2 7 4 0.25
3 1 4 −0.25
2 10.0 5.0 25 1.e−10 0.0 0.0 1 5 7 1

10.3 OUTPUT FILE DESCRIPTION

The program FLagSHyP produces a largely unannotated output file that is intended
to be an input file for a postprocessor to be supplied by the user. The contents and
structure of this file are shown in below.

Output Lines Comments

1-title(1:40),’ at increment:’, 1 Title line:
incrm, ’, load: ’,xlamb title(1:40): partial problem

title
incrm: increment

number
xlamb: current load

parameter

2-eltyp(1:5) 1 Element type

3-npoin 1 Number of mesh nodes

4-ip,icode(ip),(x(i,ip), npoin Coordinate and force data:
i=1,ndime) (force(i), ip: node number
i=1,ndime) icode(ip): boundary code

x(i,ip): x, y, z coordinates
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force(i): total external force
or reaction vector

ndime: number of
dimensions

5-nelem 1 Number of elements

6-ie,matno(ie),(lnods(i,ie),
i=1,nnode) nelem See input item 6

7-(stress(i,ig,ie),i=1,nstrs) ngaus Cauchy stresses for each Gauss point
× (ig=1, ngaus) of each mesh

nelem element (ie=1,nelem):
(2-D) stress: σxx, σxy, σyy

(plane strain)
(2-D) stress: σxx, σxy, σyy, h

(plane stress)
(3-D) stress: Nx, (truss)
(3-D) stress: σxx, σxy, σxz, σyy,

σyz, σzz

The output file produced by FLagSHyP for the simple example shown in
Figure 10.1 is listed in Box 10.2.

BOX 10.2: Output File for Example in Figure 10.1

2-D Example at increment: 1, load: 5.00

quad4

9

1 3 0.0000E+00 0.0000E+00 -0.3361E+01 0.9500E+00

2 2 0.1189E+01 -0.1250E+00 0.0000E+00 -0.2195E+01

3 3 0.2100E+01 -0.7500E-01 -0.1262E+01 -0.2211E+01

4 0 0.2906E+00 0.7809E+00 0.1006E+01 -0.2481E+01

5 0 0.1283E+01 0.1062E+01 0.0000E+00 -0.4900E+01

6 0 0.2053E+01 0.1226E+01 0.0000E+00 -0.2450E+01

7 0 0.5021E-01 0.1609E+01 0.7619E+00 -0.1668E+01

8 3 0.1000E+01 0.2000E+01 -0.3877E+01 -0.4350E-01

9 0 0.2396E+01 0.3825E+01 0.6000E+01 0.1577E+02

4

1 1 1 2 5 4

2 2 6 5 2 3

3 1 5 8 7 4

4 2 5 6 9 8
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31.165 16.636 -29.752 0.99858E-01

37.922 7.0235 29.804 0.92369E-01

9.8170 28.948 23.227 0.96515E-01

-9.1664 52.723 -52.341 0.10566

-31.460 9.0191 69.610 0.97692E-01

-44.255 19.009 40.029 0.10422

-10.503 14.344 58.661 0.94115E-01

-1.0937 4.3534 84.855 0.88759E-01

2.9733 4.9849 -8.6633 0.10056

-2.5993 10.535 -4.9380 0.10075

-10.028 16.380 -24.223 0.10326

-3.7416 10.076 -28.318 0.10306

18.711 27.033 127.70 0.80604E-01

58.710 93.889 504.64 0.52100E-01

148.61 233.72 706.89 0.39520E-01

132.88 166.87 354.22 0.54008E-01

2-D Example at increment: 2, load: 10.0

quad4

9

1 3 0.0000E+00 0.0000E+00 -0.6085E+01 0.2563E+01

2 2 0.1352E+01 -0.2500E+00 0.0000E+00 -0.3919E+01

3 3 0.2200E+01 -0.1500E+00 -0.2444E+01 -0.2920E+01

4 0 0.5401E+00 0.6699E+00 0.1632E+01 -0.5139E+01

5 0 0.1559E+01 0.1144E+01 0.0000E+00 -0.9800E+01

6 0 0.2224E+01 0.1288E+01 0.0000E+00 -0.4900E+01

7 0 0.1912E+00 0.1305E+01 0.1663E+01 -0.3025E+01

8 3 0.1000E+01 0.2000E+01 -0.8471E+01 -0.2723E+01

9 0 0.3399E+01 0.6151E+01 0.1200E+02 0.3155E+02

4

1 1 1 2 5 4

2 2 6 5 2 3

3 1 5 8 7 4

4 2 5 6 9 8

62.596 21.249 -32.758 0.96870E-01

61.948 9.8381 54.321 0.85200E-01

21.019 44.812 45.486 0.92526E-01

-15.069 104.27 -103.93 0.11028

-50.536 18.529 105.46 0.10025

-54.947 33.161 91.325 0.10362

-11.718 32.504 117.97 0.89494E-01

-9.7154 17.872 129.69 0.86976E-01

21.962 8.2142 -4.1974 0.98174E-01

(continued)
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BOX 10.2: (cont.)

-0.20453E-01 13.036 7.8808 0.99204E-01

-33.571 37.568 -33.248 0.10611

-2.7830 29.571 -48.372 0.10477

83.822 69.453 361.96 0.51329E-01

162.78 426.78 1702.4 0.29913E-01

475.04 996.13 2701.8 0.18205E-01

410.84 638.81 1376.1 0.24400E-01

10.4 ELEMENT TYPES

Nodes and Gauss points in a given finite element can be numbered in a variety
of ways. The numbering scheme chosen in FLagSHyP is shown in Figures 10.2
and 10.3.

In order to avoid the common repetitious use of shape function routines for
each mesh element, FLagSHyP (with the exception of truss2) stores in memory
the shape functions and their nondimensional derivatives for each Gauss point of
the chosen element type. This information is stored in a three-dimensional array
eledb(1:ndime+1,1:nnode+1, 1:ngaus) as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1(ξi, ηi, ζi) · · · Nn(ξi, ηi, ζi) Wi

∂N1

∂ξ
(ξi, ηi, ζi) · · · ∂Nn

∂ξ
(ξi, ηi, ζi) ξi

∂N1

∂η
(ξi, ηi, ζi) · · · ∂Nn

∂η
(ξi, ηi, ζi) ηi

∂N1

∂ζ
(ξi, ηi, ζi) · · · ∂Nn

∂ζ
(ξi, ηi, ζi) ζi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for i = 1, . . . , ngaus,

(n = nnode)

Exactly, the same type of array is constructed for the line or surface elements and
stored in the array variable elebdb.

1
2

3

1 2

3

1 2

34

4

1

1
2

3

4

5

6

1

231

1

2

FIGURE 10.2 Numbering of two-dimensional elements.
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FIGURE 10.3 Numbering of three-dimensional elements.
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T
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FIGURE 10.4 Profile storage pointers.

10.5 SOLVER DETAILS

FLagSHyP uses a standard symmetric solver based on the LDLT decomposition
that is described in detail in Zienkiewicz and Taylor, The Finite Element Method,
4th edition, Volume 1. In this procedure, the symmetric assembled tangent matrix
is stored in two vector arrays: stifd containing the diagonal part and stifp con-
taining the upper or lower off-diagonal coefficients. The way in which the entries
in the array stifp relate to the columns of the stiffness matrix is determined by
the pointer vector kprof as shown in Figure 10.4.

In order to reduce the cost of the linear solution process, it is necessary to min-
imize the length of the off-diagonal array stifp. This minimization is performed
in FLagSHyP while allocating degrees of freedom to nodes using the well-known
Cuthill–McKee algorithm. This results in a nonsequential allocation of degrees of
freedom to nodes that, although transparent to the user, are stored in the matrix
ldgof(1:ndime,1:npoin).

10.6 CONSTITUTIVE EQUATION SUMMARY

For the purpose of facilitating the understanding of the implementation of the var-
ious constitutive equations, the boxes below summarize the required constitutive
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and kinematic equations for each material type. These equations are presented here
in an indicial form to concur with the code.

Material 10.1: Three-dimensional or plane strain

compressible neo-Hookean

σij =
μ

J
(bij − δij) +

λ

J
(ln J)δij (6.29)

c ijkl = λ′δijδkl + μ′ (δikδjl + δilδjk

)
(6.40)

λ′ =
λ

J
; μ′ =

μ − λ ln J

J
(6.41)

Material 10.2: One-dimensional stretch-based

hyperelastic plastic

λtrial
e,n+1 =

ln+1

lp,n
; J =

(
λtrial

e,n+1

)(1−2ν)
(3.51, 3.50)

εtrial
e,n+1 = ln λtrial

e,n+1 (3.52a,b,c)

τ trial
n+1 = E εtrial

e,n+1 (3.61a,b)

f
(
τ trial
n+1 , ε̄p,n

)
=
∣∣∣τ trial

n+1

∣∣∣− (τ0
y + Hε̄p,n) (3.62)

Δγ =

⎧⎪⎨⎪⎩
f
(
τ trial
n+1 , ε̄p,n

)
E + H

if f
(
τ trial
n+1 , ε̄p,n

)
> 0

0 if f
(
τ trial
n+1 , ε̄p,n

)
≤ 0

(3.69)

τn+1 = τ trial
n+1 − EΔγ sign(τn+1) (3.65)

If f > 0
d τn+1

d εn+1
=

EH

E + H
(3.74)

Else
d τn+1

d εn+1
= E (3.15)
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Material 10.3: Three-dimensional or plane strain hyperelasticity in principal

directions

σαα =
2μ

J
lnλα +

λ

J
lnJ (6.94)

σij =
3∑

α=1

σααTαiTαj ; (Tαi = nα · ei) (6.81)

c ijkl =
3∑

α,β=1

λ + 2(μ − σαα)δαβ

J
TαiTαjTβkTβl

+
3∑

α,β=1
α�=β

μαβ (TαiTβjTαkTβl + TαiTβjTβkTαl)

(6.90, 6.95)

μαβ =
σααλ2

β − σββλ2
α

λ2
α − λ2

β

; if λα �= λβ or

μαβ =
μ

J
− σαα if λα = λβ (6.90, 6.91, 6.95)

Material 10.4: Plane stress hyperelasticity in principal directions

γ =
2μ

λ + 2μ
(6.116a,b(b))

λ̄ = γλ (6.116a,b(a))

J = jγ ; (J = dv/dV ; j = da/dA) (6.117)

σαα =
2μ

jγ
lnλα +

λ̄

jγ
ln j (6.118)

σij =
2∑

α=1

σααTαiTαj ; (Tαi = nα · ei) (6.81)

c ijkl =
2∑

α,β=1

λ̄ + 2(μ − σαα)δαβ

jγ
TαiTαjTβkTβl

+μ12 (T1iT2jT1kT2l + T1iT2jT2kT1l) (6.90, 119)

μ12 =
σ11λ

2
2 − σ22λ

2
1

λ2
1 − λ2

2
; if λ1 �= λ2 or μ12 =

μ

jγ
− σ11 if λ1 = λ2

(6.90, 6.91, 6.119)

h =
HJ

j
(Exercise 4.4)
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Material 10.5: Three-dimensional or plane strain nearly

incompressible neo-Hookean

J̄ =
v(e)

V (e) (8.50a)

p = κ(J̄ − 1) (8.52)

κ̄ = κ
v(e)

V (e) (8.61)

σ′
ij = μJ−5/3

(
bij − 1

3
Ibδij

)
(6.55)

σij = σ′
ij + pδij (5.49a,b(a))

ĉ ijkl = 2μJ−5/3
[
1
6
Ib

(
δikδjl + δilδjk

)
− 1

3
bijδkl − 1

3
δijbkl +

1
9
Ibδijδkl

]
(6.59a)

c p,ijkl = p (δijδkl − δikδjl − δilδjk) (6.59b)

Material 10.6: Plane stress incompressible neo-Hookean

(Exercise 6.1)

J = 1; (J = dv/dV, j = da/dA)

σij = μ(bij − j−2δij);
(
j2 = det

2×2
b
)

c ijkl = λ′δijδkl + μ′ (δikδjl + δilδjk

)
λ′ =

2μ

j2

μ′ =
μ

j2

h =
H

j
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Material 10.7: Nearly incompressible in principal directions

J̄ = v(e)/V (e) (8.50a)

p =
κ ln J̄

J̄
(6.103)

κ̄ = J̄
dp

dJ̄
=

κ

J̄
− p (8.59)

σ′
αα = − 2μ

3J
ln J +

2μ

J
ln λα (6.107)

σ′
ij =

3∑
α=1

σ′
ααTαiTαj ; (Tαi = nα · ei) (6.81)

σij =σ′
ij + pδij (5.49a,b)a

c p,ijkl = p(δijδkl − δikδjl − δilδjk) (6.59b)

ĉ ijkl =
3∑

α,β=1

2
J

[
(μ − σ′

αα)δαβ − 1
3
μ

]
TαiTαjTβkTβl

+
3∑

α,β=1
α�=β

μαβ

(
TαiTβjTαkTβl + TαiTβjTβkTαl

)
(6.110, 6.111)

μαβ =
σ′

ααλ2
β − σ′

ββλ2
α

λ2
α − λ2

β

; if λα �= λβ or μαβ =
μ

J
− σ′

αα if λα = λβ

(6.110, 6.91, 6.111)

Material 10.8: Plane stress incompressible in principal directions

λ → ∞; γ = 0; λ̄ = 2μ (6.116a,b)

J = 1; (J = dv/dV ; j = da/dA) (6.117)

σαα = 2μ ln λα + λ̄ ln j (6.118)

σij =
2∑

α=1

σααTαiTαj ; (Tαi = nα · ei) (6.81)

c ijkl =
2∑

α,β=1

[
λ̄ + 2(μ − σαα)δαβ

]
TαiTαjTβkTβl

+μ12
(
T1iT2jT1kT2l + T1iT2jT1lT2k

)
(6.90, 6.119)

μ12 =
σ11λ2

2 − σ22λ2
1

λ2
1 − λ2

2
; if λ1 �= λ2 or μαβ = μ − σ11 if λ1 = λ2

(6.90, 6.91, 6.119)

h =
H

j
(Exercise 4.4)
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Material 10.9: Three-dimensional or plane strain

hyperelastic-plastic in principal directions

J̄ = v(e)/V (e) (8.50a)

p ≈ κ
ln J̄

J̄
(6.103)

νn+1
α =

τ ′ trial
αα√

2
3‖τ ′ trial‖

(7.54a,b)

Δγ =

⎧⎨⎩
f(τ trial, ε̄p,n)

3μ + H
if f(τ trial, ε̄p,n) > 0

0 if f(τ trial, ε̄p,n) ≤ 0
(7.59)

lnλn+1
e,α = lnλtrial

e,α − Δγνn+1
α (7.45a,b)

τ ′
αα =

(
1 − 2μΔγ√

2/3‖τ ′ trial‖

)
τ ′ trial
αα (7.60)

σ′
αα =

1
Jn+1

τ ′
αα (5.31a,b)b

σαα = σ′
αα + p (5.49a,b)a

σij =
2∑

α=1

σααTαiTαj ; (Tαi = nα · ei) (6.81)

ĉ ijkl =
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J
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2σ′
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(7.62a)

f(τ trial, ε̄p,n) ≤ 0 (7.20a,b)

If f > 0 cαβ =
(

1 − 2μΔγ√
2/3 ‖τ ′ trial‖

)(
2μδαβ − 2

3
μ

)
−2μ νανβ

(
2μ

3μ + H
− 2μ

√
2/3 Δγ
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)
(7.67)

Else cαβ = 2μδαβ − 2
3
μ

(7.64)
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BOX 10.3: FLagSHyP Structure

flagshyp ..............master routine
welcome ...........types welcome message and reads file names
elinfo ............reads element type

lin2db ........evaluates the 2-noded line element data
qua3db ........evaluates the 3-noded line element data
tria3db .......evaluates the 3-noded triangle data
tria6db .......evaluates the 6-noded triangle data
tetr4db .......evaluates the 4-noded tetrahedron data
tetr10db ......evaluates the 10-noded tetrahedron data
quad4db .......evaluates the 4-noded quadrilateral data
hexa8db .......evaluates the 8-noded hexahedron data

innodes ...........reads nodal coordinates and boundary codes
inelems ...........reads element connectivities and material types
nodecon ...........evaluates node to node connectivities
degfrm ............numbers degrees of freedom with profile minimization
profile ...........determines the profile column heights and addressing
matprop ...........reads material properties
inloads ...........reads loads and prescribed displacements
incontr ...........reads solution control parameters
initno ............initializes nodal data such as coordinates
initel ............finds the initial tangent matrix and gravity loads

gradsh ........finds the Cartesian derivatives of the shape functions
kvolume .......finds the mean dilatation component of the stiffness matrix
cisotp ........finds the isotropic elasticity tensor
kconst ........obtains and assembles the constitutive component of K

in stat ...........initializes the state variables
initrk ............initializes the tangent matrix and residual to zero
bpress .............deals with boundary pressure elements

pforce ........evaluates the forces due to normal pressure
kpress ........evaluates the external pressure component of K

elemtk ............organizes the evaluation of internal forces and K
trusstk .......evaluates truss equivalent forces and stiffness
gradsh ........finds the Cartesian derivatives of the shape functions
getheta .......evaluates the average Jacobian or volume ratio
cg ........evaluates the left Cauchy--Green tensor
jacobi ........finds principal directions and stretches
stress1 .......evaluates stresses for material type 1
stress3 .......evaluates stresses for material type 3
stress5 .......evaluates stresses for material type 5
stress6 .......evaluates stresses for material type 6
yfunc17 .......evaluates the yield function
radialrtn .......implements radial return algorithm
strsp2c .......transforms principal to Cartesian stresses
newstate ......updates current state variables
addpres .......adds the internal pressure to deviatoric stresses
cisotp ........finds the isotropic elasticity tensor
cdevia ........finds the deviatoric component of the elasticity tensor
cvolum ........finds the pressure component of the elasticity tensor
cprinc ........finds the elasticity tensor for materials in principal directions
internal ......obtains and assembles internal forces
kconst ........obtains and assembles the constitutive component of K
ksigma ........obtains and assembles the initial stress component of K
kvolume .......finds the mean dilatation component of the stiffness matrix

datri .............performs the LDU decomposition
dot ...........dot product of two vectors
datest ........tests the rank of the matrix
dredu .........reduces the diagonal terms

dasol .............performs the backsubstitution solution process
colred ........reduces a column
dot ...........dot product of two vectors

force .............evaluates the current force increment
prescx ............enforces prescribed displacements
update ............updates the nodal coordinates
arclen ............implements the arc-length method
checkr ............evaluates the residual norm
search ............implements the line search process
state update ......updates converged state variables
output ............outputs current converged state

dump ..............dumps the current state to a binary file
restar1 ...........prepares to restart by reading scalar values
restar2 ...........prepares to restart by reading arrays
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10.7 PROGRAM STRUCTURE

In order to give an overview of the structure of the program FLagSHyP, Box 10.3 lists
all routines contained in the program indented according to the calling sequence.
The routines in italic typeface are described in details in the following sections.
The remainder are either routines common to standard linear elasticity finite ele-
ment codes or relatively minor and self-evident utility routines that are a direct
FORTRAN translation of some of the equations described in the text.

10.8 MAIN ROUTINE flagshyp

The main routine closely follows the algorithm described in Box 9.1, which is
repeated in Box 10.4 for convenience. The items in parentheses refer to segments

BOX 10.4: Solution Algorithm

• INPUT geometry, material properties, and solution parameters (flagshyp seg-
ment 2)

• INITIALIZE F = 0, x = X (initial geometry), R = 0 (flagshyp segment 2)
• FIND initial K (flagshyp segment 3)
• LOOP over load increments (flagshyp segment 5)

• SET λ = λ + Δλ, F = λF̄, R = R − ΔλF̄ (flagshyp segment 5)
• IF PRESCRIBED DISPLACEMENTS: (flagshyp segment 5)

• UPDATE GEOMETRY (flagshyp segment 5)
• FIND F,T,K,R = T − F (flagshyp segment 5)

• END IF (flagshyp segment 5)
• DO WHILE (‖R‖/‖F‖ > tolerance ) (flagshyp segment 6)

• SOLVE Ku = −R (flagshyp segment 6)
• IF ARC-LENGTH FIND λ (flagshyp segment 6)
• LOOP OVER LINE SEARCHES (flagshyp segment 7)

· UPDATE GEOMETRY x = x + u (flagshyp segment 7)
· FIND F,T,K,R = T − λF̄ (flagshyp segment 7)
· FIND η (flagshyp segment 7)

• END LOOP (flagshyp segment 7)

• END DO (flagshyp segment 7)
• OUTPUT INCREMENT RESULTS (flagshyp segment 8)

• ENDLOOP (flagshyp segment 8)
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contained in the main routine flagshyp. Each of these program segments is pre-
sented in the following pages in a box followed by a short description. The concate-
nation of these boxes comprises the main routine. To avoid duplication, comments
have been removed and only actual FORTRAN instructions are shown. A dictio-
nary of main variables used throughout the code is provided as an appendix to this
chapter.

flagshyp segment 1 – Dimensions

program flagshyp
implicit double precision (a-h,o-z)
parameter (mpoin=100)
parameter (melem=100)
parameter (mdgof=300)
parameter (mprof=10000)
parameter (mnode=10)
parameter (mgaus=8)
parameter (mmats=10)
parameter (mbpel=100)
parameter (mstat=7)
character*80 title, outfile
character*10 eltyp,ans_MAT*1
logical rest,afail,farcl
dimension x(3,mpoin),x0(3,mpoin),icode(mpoin),ldgof(3,mpoin)
dimension lnods(mnode,melem),eledb(4,mnode+1,mgaus),

& stres(6,mgaus,melem),matno(melem),elecd(4,mnode,mgaus),
& vinc(mgaus),vol0(melem),el0(melem),elacd(4,mnode),
& elbdb(3,mnode+1,mgaus),lbnod(mnode,mbpel),press(mbpel)
dimension stifd(mdgof),stifp(mprof),kprof(mdgof),eload(mdgof),

& pdisp(mdgof),resid(mdgof),displ(mdgof),xincr(mdgof),
& react(mdgof), tload(mdgof)
dimension props(8,mmats),gravt(3),matyp(mmats),

& statn(mstat,mgaus,melem),stato(mstat,mgaus,melem)

The parameters listed above control the maximum problem size. Large exam-
ples may require some of these dimensions to be reset. It can be seen that these
parameters control the size of various vectors and matrices whose purpose will be
described when required.

flagshyp segment 2 – Input

call welcome(title,rest,outfile,ans_MAT)
if(.not.rest) then
call elinfo(mnode,mgaus,ndime,nnode,ngaus,nnodb,ngaub,eledb,

& elbdb,eltyp,nstrs,nstat)
(continued)
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call innodes(mpoin,ndime,npoin,x,icode,ldgof)
call inelems(melem,nelem,nnode,lnods,matno,nmats)
call init_mesh(npoin,ndime,x,nnode,nelem,lnods,

& eltyp,outfile,ans_MAT)
call nodecon(npoin,nelem,nnode,lnods,stifp)
call degfrm (mdgof,npoin,ndime,stifp,ndgof,negdf,ldgof,stifd)
call profile(mprof,ndgof,nelem,nnode,ndime,lnods,ldgof,

& nprof,kprof)
call matprop(ndime,nmats,matyp,props,eltyp)
call inloads(ndime,npoin,ndgof,negdf,nnodb,mbpel,ldgof,eload,

& pdisp,gravt,nprs,nbpel,lbnod,press)
call incontr(nincr,xlmax,dlamb,miter,cnorm,searc,arcln,11,

& incout,itarget,farcl,nwant,iwant,ndime,npoin)

The program can start either from an input data file or, when convenient, using
data from a restart file written during a previous incomplete analysis. The mode
of operation is controlled by the user interactively from the screen and is recorded
in the logical variable rest read by the welcome routine. The logical variable
ans MAT provides the opportunity to output data suitable for drawing deformed
configurations. In the following it is assumed that the data are read for the first
time. Subroutine elinfo reads the element type eltyp and establishes the arrays
eledb and elbdb discussed in Section 10.4. Subroutine innodes reads nodal input
data items 3 and 4, and subroutine inelems reads element input data items 5 and
6. Routine nodecon determines the node to node connectivities required by the
Cuthill–McKee algorithm implemented in degfrm, which at the same time allo-
cates degree-of-freedom numbers to nodes and stores them in ldgof. In profile
the profile pointers are obtained and stored in the vector array kprof. Subroutine
matprop reads in material property data items 7 and 8. Routine inloads inputs
loading and prescribed displacement items 9, 10, 11, and 12, and incontr reads
the solution control item 13.

flagshyp segment 3 – Initialization and dump

xlamb=0.0
incrm=0
ikount=0
iterold=itarget
afail=.false.
call initno(ndime,npoin,ndgof,nprof,x,x0,stifd,stifp,resid,
& react,xincr)
call initel(ndime,nnode,ngaus,nelem,gravt,x,eledb,
& lnods,matno,matyp,props,ldgof,eload,kprof,stifd,
& stifp,vinc,elecd,elacd,vol0,el0,eltyp)
call in_stat(rest,ndime,ngaus,nstat,nelem,eltyp,statn,stato)
call dump(title,eltyp,ndime,npoin,nnode,ngaus,nstrs,nstat,
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& nelem,ndgof,negdf,nprs,nprof,nmats,incrm,xlamb,nbpel,
& nnodb,ngaub,matyp,props,matno,lnods,x,x0 ,kprof,
& stifd,stifp,resid,eload,ldgof,icode,eledb,pdisp,
& vol0,elbdb,lbnod,press,xincr,dlamb,ikount,incout,
& itarget,iterold,nincr,miter,cnorm,searc,arcln,
& el0,nwant,iwant,stato)

Routineinitno sets the residualsresid, the tangent matrix componentsstifd
and stifp to zero, and defines the initial geometry x0 as the current geometry x.
Routine initel evaluates the equivalent nodal forces due to gravity and the tangent
stiffness matrix at the unstressed configuration (this coincides with the small strain
linear elastic stiffness matrix). It also evaluates the total mesh volume and prints
this on the screen. Routine in stat initializes the state variables. All the relevant
information is now dumped to a restart file.

flagshyp segment 4 – Restart

else
call restar1(title,eltyp,ndime,npoin,nnode,ngaus,nstrs,nstat,

& nelem,ndgof,negdf,nprs ,nprof,nmats,incrm,xlamb,
& nbpel,nnodb,ngaub,dlamb,ikount,incout,itarget,
& iterold,nincr,miter,cnorm,searc,arcln,nwant,iwant)
call restar2(ndime,npoin,nnode,ngaus,nstat,nelem,ndgof,negdf,

& nprof,nmats,nnodb,ngaub,nbpel,matyp,props,matno,
& lnods,x,x0,kprof,stifd,stifp,resid,eload,ldgof,
& icode,eledb,pdisp,vol0 ,elbdb,lbnod,press,xincr,
& el0,stato)
call in_stat(rest,ndime,ngaus,nstat,nelem,eltyp,statn,stato)
call incontr(nincr,xlmax,dlamb,miter,cnorm,searc,arcln,5,

& incout,itarget,farcl,nwant,iwant,ndime,npoin)
endif

If the program is restarting from a previous incomplete solution, a restart file is
read and the solution control parameters are reset by reading them interactively from
the screen. This enables the user to reset the convergence tolerance, the maximum
number of iterations per step, etc.

flagshyp segment 5 – Increment loop

do while((xlamb.lt.xlmax).and.(incrm.lt.nincr))
incrm=incrm+1
if(arcln.eq.0.0) then
xlamb=xlamb+dlamb
else (continued)
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if(.not.afail) then
if(.not.farcl) then

arcln=arcln*(float(itarget)/float(iterold))**0.7
endif

endif
endif

call force(ndgof,dlamb,eload,tload,resid)
call bpress(ndime,nnodb,ngaub,nbpel,dlamb,elbdb,lbnod,press,
& x,ldgof,tload,react,resid,kprof,stifd,stifp)

if(nprs.gt.0) then
call prescx(ndime,npoin,ldgof,pdisp,x0,x,xlamb)
call initrk(ndgof,nprof,negdf,xlamb,eload,tload,resid,react,

& stifd,stifp)
call bpress(ndime,nnodb,ngaub,nbpel,xlamb,elbdb,lbnod,press,

& x,ldgof,tload,react,resid,kprof,stifd,stifp)
call elemtk(ndime,nnode,ngaus,nstrs,nstat,nelem,x,x0,eledb,

& lnods,matno,matyp,props,ldgof,stres,resid,kprof,
& stifd,stifp,react,vinc,elecd,elacd,vol0,el0,
& eltyp,statn,stato)

endif

The do while controls the load or prescribed displacement incrementation.
This remains active while the load-scaling parameter xlamb is less than the maxi-
mum xlmax, and the increment number is smaller than the total number of incre-
ments nincr. If arc-length control is applied and the arc-length procedure has not
indicated a negative square root failure then the arc-length arcln is adjusted to
optimize the number of Newton–Raphson iterations per load increment.

The imposition of an increment of point or gravity loads immediately creates
a residual force. This is added to any small residual carried over from the previous
increment by the routine force. This prevents errors in the converged solution (for
instance, due to a large tolerance value cnorm) from propagating throughout the
solution process. The further addition to the residual forces due to an increment
in applied surface pressure is evaluated by calling bpress with the fifth argument
set to the load parameter increment dlamb. At the same time bpress evaluates the
addition to the tangent matrix due to the change in its initial pressure component
that results from the increment in the magnitude of the pressure.

If prescribed displacements have been imposed, then the current increment in
their value will immediately change the current geometry and necessitate a com-
plete re-evaluation of equivalent internal and surface pressure forces and the tangent
matrix (this is effectively a geometry update). In this case, subroutine prescx will
reset the current geometry for those nodes with prescribed displacements based on
their initial coordinates, the nominal value of the prescribed displacement, and the
current load-scaling parameter xlamb. Subroutine initrk initializes the tangent
matrix to zero and the residuals to the current value of external and point loads.
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Subsequently, subroutine bpress, now called with the fifth argument set to xlamb,
adds the total value of the nodal forces due to surface pressure and obtains the
corresponding initial surface pressure tangent matrix component. Finally, routine
elemtk evaluates the current equivalent nodal forces due to stresses, subtracts these
from the residual vector, and computes the constitutive and initial stress components
of the tangent matrix.

flagshyp segment 6 – Newton–Raphson loop

niter=0
rnorm=2.*cnorm
do while((rnorm.gt.cnorm).and.(niter.lt.miter))

niter=niter+1
call datri(stifp,stifp,stifd,kprof,ndgof,.false.,6)
call dasol(stifp,stifp,stifd,resid,displ,kprof,ndgof,6,rtu0)
if(arcln.ne.0.0) then
call dasol(stifp,stifp,stifd,tload,resid,kprof,ndgof,6,r)
call arclen(incrm,ndgof,niter,arcln,displ,resid,xincr,

& xlamb,dlamb,afail,farcl)
if(afail) then

arcold=arcln
goto 99

endif
endif

The do while loop controls the Newton–Raphson iteration process. This con-
tinues until the residual norm rnorm is smaller than the tolerance cnorm and, of
course, while the iteration number niter is smaller than the maximum allowed
miter. (Note that rnorm is initialized in such a way that this loop is completed at
least once.) The first step of the Newton–Raphson process is the factorization of
the current tangent matrix performed in dasol. Note that for the first iteration of
the first increment, the tangent matrix is available either from initel in segment 3
or from elemtk in segment 5. Subsequently, the current matrix is that evaluated at
the previous iteration unless nonzero displacements have been prescribed, in which
case it is re-evaluated in segment 5. Factorization is followed by the backsubstitution
routine dasol from which the incremental displacements displ are obtained. If the
arc-length method is in use, dasol is called again to evaluate the auxiliary vector uF

(see Equation (9.79a,b,c)c), which is temporarily stored in the array resid. The arc-
length manipulation is completed by evaluating a new value of the scaling parameter
xlamb in the routine arclen. If arc-length control is applied and the arc-length pro-
cedure indicates a negative square root failure then an automatic restart is initiated.
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flagshyp segment 7 – Solution update and equilibrium check loop

eta0=0.
eta=1.
nsear=0
rtu=rtu0*searc*2.
do while((abs(rtu).gt.abs(rtu0*searc)).and.(nsear.lt.5))

nsear=nsear+1
call update(ndime,npoin,ldgof,x,displ,eta-eta0)
call initrk(ndgof,nprof,negdf,xlamb,eload,tload,resid,

& react,stifd,stifp)
call bpress(ndime,nnodb,ngaub,nbpel,xlamb,elbdb,lbnod,

& press,x,ldgof,tload,react,resid,kprof,stifd,
& stifp)

call elemtk(ndime,nnode,ngaus,nstrs,nstat,nelem,x,x0,
& eledb,lnods,matno,matyp,props,ldgof,stres,
& resid,kprof,stifd,stifp,react,vinc,elecd,
& elacd,vol0,el0,eltyp,statn,stato)

if(abs(arcln).gt.0.0) nsear=999
call search(ndgof,resid,displ,eta0,eta,rtu0,rtu)

enddo
call checkr(incrm,niter,ndgof,negdf,xlamb,resid,tload,

& react,rnorm)
iterold=niter

enddo

If the line-search parameter searc is input as 0.0, the program resets the value
in the routine incontr to 105. This simple device ensures that the do while loop
is performed at least once per Newton–Raphson iteration in order to update the
solution and check for equilibrium. If searc is not 0.0, the line search procedure
is active and this inner line search loop may be performed up to five times. The
routine update adds the displacements evaluated in segment 6, scaled by the line
search factor η (initially set to 1), to the current nodal positions. Given this new
geometry, the routines initrk, bpress, and elemtk serve the same purpose as
described in segment 5. The routine search evaluates a new line search factor η

if required. Finally, checkr computes the residual norm rnorm given the residual
force vector resid and the total external force vector tload.

flagshyp segment 8 – Retry or output results

99 if(niter.ge.miter.or.afail) then
rest=.true.
call restar1(title,eltyp,ndime,npoin,nnode,ngaus,nstrs,nstat,

& nelem,ndgof,negdf,nprs ,nprof,nmats,incrm,xlamb,
& nbpel,nnodb,ngaub,dlamb,ikount,incout,itarget,
& iterold,nincr,miter,cnorm,searc,arcln,nwant,iwant)
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call restar2(ndime,npoin,nnode,ngaus,nstat,nelem,ndgof,negdf,
& nprof,nmats,nnodb,ngaub,nbpel,matyp,props,matno,
& lnods,x,x0,kprof,stifd,stifp,resid,eload,ldgof,
& icode,eledb,pdisp,vol0 ,elbdb,lbnod,press,xincr,
& el0,stato)

call in_stat(rest,ndime,ngaus,nstat,nelem,eltyp,statn,stato)
if(afail) then

write(6,100)
arcln=arcold/10.0

else
write(6,101)

call incontr(nincr,xlmax,dlamb,miter,cnorm,searc,arcln,5,
& incout,itarget,farcl,nwant,iwant,ndime,npoin)

endif
else

call state_update(nstat,ngaus,nelem,statn,stato)
call output(ndime,nnode,ngaus,nstrs,npoin,nelem,eltyp,title,

& icode,incrm,xlamb,x,lnods,ldgof,matno,stres,
& tload,react,ikount,incout,arcln,nwant,iwant,
& outfile,ans_MAT)

call dump(title,eltyp,ndime,npoin,nnode,ngaus,nstrs,nstat,
& nelem,ndgof,negdf,nprs,nprof,nmats,incrm,xlamb,
& nbpel,nnodb,ngaub,matyp,props,matno,lnods,x,x0,
& kprof,stifd,stifp,resid,eload,ldgof,icode,eledb,
& pdisp,vol0,elbdb,lbnod,press,xincr,dlamb,ikount,
& incout,itarget,iterold,nincr,miter,cnorm,searc,
& arcln,el0,nwant,iwant,stato)

endif
enddo
stop

100 format(’ Negative square root in arclength’/
& ’ Reducing arcln and restarting’/)

101 format(’ Solution not converged, restart from previous step’/)
end

In the event that the Newton–Raphson iteration does not converge, the user has
the opportunity of interacting with the program to restart from the previous con-
verged increment with revised control parameters. Note that interactively setting
the number of increments to any value smaller than the current increment number
will result in the termination of the program. Alternatively, if the arc-length routine
reports a failure then the program will automatically restart with a smaller value
of arcln. Subroutine output writes out the output file described in Section 10.3
while dump creates a binary file with enough information to enable future restarts.
Even if the program successfully completes an analysis there is the opportunity to
continue the analysis using the interactive restart facility.
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10.9 ROUTINE elemtk

This routine evaluates equivalent nodal forces from element stresses and, at the
same time, the main components of the tangent matrix. The coefficients of both
these items are immediately assembled upon computation. Observe that in the
presence of applied surface pressure, the initial pressure component of the tangent
matrix has previously been evaluated and assembled by the routine bpress. This
routine will be described in more detail in Section 10.12. Again recall that the
concatenation of the following segments constitutes the complete routine.

elemtk segment 1 – Element loop

subroutine elemtk(ndime,nnode,ngaus,nstrs,nstat,nelem,x,x0,eledb,
& lnods,matno,matyp,props,ldgof,stres,resid,kprof,
& stifd,stifp,react,vinc,elecd,elacd,vol0,el0,
& eltyp,statn,stato)
implicit double precision (a-h,o-z)
character*10 eltyp
dimension lnods(nnode,*),props(8,*),ldgof(ndime,*),kprof(*),
& stifd(*),stifp(*),x(ndime,*),x0(ndime,*),matno(*),
& eledb(ndime+1,nnode+1,ngaus),elacd(ndime,*),resid(*),
& ctens(3,3,3,3),sigma(3,3),finvr(3,3),ftens(3,3),
& btens(3,3),matyp(*),react(*),stres(nstrs,ngaus,*),
& stret(3),princ(3,3),sprin(3),vol0(*),vnorm(3),
& elecd(ndime,nnode,*),vinc(*),el0(*),
& statn(nstat,ngaus,*),stato(nstat,ngaus,*)
do id=1,3

do jd=1,3
btens(id,jd)=0.0d0

enddo
enddo
if(eltyp(1:6).eq.’truss2’) then

call trusstk(ndime,nnode,nelem,x,lnods,ngaus,nstrs,
& nstat,matno,props,ldgof,kprof,stifd,stifp,
& vol0,el0,stres,react,resid,statn,stato)
else

do ie=1,nelem
im=matno(ie)
mat=matyp(im)
call gradsh(ie,ndime,nnode,ngaus,eledb,lnods,x,elecd,vinc)

The nomenclature...tk refers to the calculation of the internal forces t and the
tangent stiffness k. Provided the element type is not truss2 the Elemtk routine
loops first over all the elements. For each element the standard routine gradsh
computes current Cartesian derivatives ∂Na/∂x of the shape functions using Equa-
tion (9.11a,b). For convenience gradsh computes these derivatives at all Gauss
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points of the element and stores them in elecd. Additionally, gradsh returns
the weighted Jacobian per Gauss point. The routine trusstk and the associ-
ated elasto-plastic routine elas plas are not discussed herein as the coding is
self-explanatory.

elemtk segment 2 – Mean dilatation implementation

if(mat.eq.5) then
call getheta(ngaus,vol0(ie),vinc,theta)
xkapp=props(4,im)
press=xkapp*(theta-1.)
xkapp=xkapp*theta
call kvolume(ndime,nnode,ngaus,xkapp,vinc,elecd,elacd,

& lnods(1,ie),ldgof,kprof,stifd,stifp)
else if ((mat.eq.7).or.(mat.eq.17)) then

call getheta(ngaus,vol0(ie),vinc,theta)
xkapp=props(4,im)
press=xkapp*log(theta)/theta
xkapp=(xkapp/theta)-press
call kvolume(ndime,nnode,ngaus,xkapp,vinc,elecd,elacd,

& lnods(1,ie),ldgof,kprof,stifd,stifp)
endif

For nearly incompressible Materials 5, 7, and the elasto-plastic material 17,
the mean dilatation technique described in Chapters 8 and 9 is used to obtain
first the internal element pressure p (press) from the volume ratio J̄ (theta
in the program) using Equation (8.50a). The dilatational component Kκ of the
tangent matrix is computed and assembled in routine kvolume using Equa-
tion (9.59a,b).

elemtk segment 3 – Gauss loop and evaluation of b

do ig=1,ngaus
call Flcg(ndime,nnode,lnods(1,ie),x0,elecd(1,1,ig),

& detf,finvr,ftens,btens)

For each element the routine now loops over all Gauss points. Given that the
current rather than initial Cartesian derivatives are known, routine Flcg first evalu-
ates the inverse deformation gradient as F −1 = ∂X/∂x =

∑
a Xa ⊗ ∇Na, then

obtains F , and finally b = FF T . This routine also evaluates the pointwise volume
ratio J = detF (or area ratio in the case of plane stress). Using this left Cauchy–
Green tensor, the seven segments that follow will obtain the Cauchy stresses and
elasticity tensor for each of the seven material types implemented.
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elemtk segment 4 – Compressible neo-Hookean material

if(mat.eq.1) then
xlamb=props(3,im)/detf
xmu=props(2,im)/detf
xme=xmu-xlamb*log(detf)
call stress1(ndime,xmu,xme,btens,sigma)
call cisotp(ndime,xlamb,xme,ctens)

This constitutive equation is described in Section 6.4.3. The Cauchy stresses
are evaluated in terms of the b tensor from Equation (6.29), whereas the coefficients
of the elasticity tensor are obtained in cisotp using Equation (6.40).

elemtk segment 5 – Hyperelastic material in principal directions

else if(mat.eq.3) then
xlam=props(3,im)/detf
xmu=props(2,im)/detf
call jacobi(btens,stret,princ)
call stress3(ndime,xmu,xlam,detf,stret,princ,sigma,sprin)
call cprinc(ndime,xlam,xmu,stret,princ,sprin,ctens)

For this type of material the principal directions nα and principal stretches are
first computed by the routine jacobi and stored in princ and stret respectively.
Given these stretches and directions, the routine stress3 evaluates the Cartesian
components of the Cauchy stress tensor with the help of Equations (6.81) and (6.94).
Finally, the routine cprinc uses Equations (6.90), (6.91), and (6.95) to compute
the corresponding elasticity tensor.

elemtk segment 6 – Plane stress hyperelastic in principal directions

else if(mat.eq.4) then
det3d=detf**props(5,im)
xlam=props(3,im)/det3d
xmu=props(2,im)/det3d
call jacobi(btens,stret,princ)
call stress3(ndime,xmu,xlam,detf,stret,princ,sigma,sprin)
call cprinc(ndime,xlam,xmu,stret,princ,sprin,ctens)
vinc(ig)=vinc(ig)*props(4,im)*det3d/detf
stres(4,ig,ie)=props(4,im)*det3d/detf

This material is described in Section 6.6.7 and is implemented in a similar way
to the previous equation, the main difference being the parameter γ, which has
been obtained in routine matprop using Equation (6.116a,b) and is stored as the
fifth material parameter in props(5,im). Finally, the current thickness is updated
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in terms of the volume ratio J , the area ratio j, and the initial thickness stored in
props(4,im) (see Exercise 4.4). The current thickness is stored as the fourth stress
for output purposes.

elemtk segment 7 – Nearly incompressible neo-Hookean

else if(mat.eq.5) then
xmu=props(2,im)
call stress5(ndime,xmu,detf,btens,sigma)
call addpres(ndime,press,sigma)
call cdevia(ndime,xmu,detf,btens,ctens)
call cvolum(ndime,press,ctens)

This material is discussed in Sections 6.5.2 and 6.5.3. The deviatoric Cauchy
stresses are evaluated in stress5 using Equation (6.55). Note that in the mean
dilatation method the pressure is constant over the element and therefore evaluated
in segment 2 outside the Gauss point loop. This pressure value is now added to
the deviatoric components in addpres. Once the stresses are evaluated, routines
cdevia and cvolum obtain the deviatoric and volume components of the elasticity
tensor by direct application of Equations (6.59a,b).

elemtk segment 8 – Plane stress incompressible neo-Hookean

else if(mat.eq.6) then
xmu=props(2,im)
xme=xmu/(detf*detf)
xla=2.*xme
call stress6(ndime,xmu,detf,btens,sigma)
call cisotp(ndime,xla,xme,ctens)
vinc(ig)=vinc(ig)*props(4,im)/detf
stres(4,ig,ie)=props(4,im)/detf

This material is discussed in Exercise 6.2. Initially, the effective shear coef-
ficient μ′ is evaluated dividing μ by j2 = det2×2 b. As shown in Exercise 6.2,
an effective lambda coefficient (see Equation (6.40)) emerges as twice the effec-
tive shear coefficient. The thickness is finally computed as in Material 4 with the
exception that due to incompressibility det3d is equal to 1.

elemtk segment 9 – Nearly incompressible in principal directions

else if(mat.eq.7) then
xmu=props(2,im)/detf
xlam=-2.*xmu/3.
call jacobi(btens,stret,princ) (continued)
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call stress3(ndime,xmu,xlam,detf,stret,princ,sigma,sprin)
call addpres(ndime,press,sigma)
call cprinc(ndime,xlam,xmu,stret,princ,sprin,ctens)
call cvolum(ndime,press,ctens)

This material is discussed in Section 6.6.6. Stretches and principal directions are
first evaluated in Jacobi. Routine stress, which implemented Equation (6.94),
is reused with λ being set to −2μ/3 to give the deviatoric Cauchy stresses in
accordance with Equation (6.107). The internal hydrostatic pressure is the added
in addpres. The deviatoric components of the elasticity tensor are obtained using
the same routine cprinc employed for Material 3 by setting the argument xlam to
−2μ/3. Finally, the volumetric component is obtained as per Material 5.

elemtk segment 10 – Plane stress incompressible in

principal directions

else if(mat.eq.8) then
xmu=props(2,im)
xlam=2.*xmu
call jacobi(btens,stret,princ)
call stress3(ndime,xmu,xlam,detf,stret,princ,sigma,sprin)
call cprinc(ndime,xlam,xmu,stret,princ,sprin,ctens)
vinc(ig)=vinc(ig)*props(4,im)/detf
stres(4,ig,ie)=props(4,im)/detf

This material is identical to Type 4 (see segment 6), but because of incompress-
ibility λ → ∞ and hence γ = 0, J = 1, and λ̄ = 2μ.

elemtk segment 11 – Elasto-plastic in principal directions (1)

else if(mat.eq.17) then
call trlcg(ndime,ftens,stato(1,ig,ie),btens)
call jacobi(btens,stret,princ)
xmu=props(2,im)
xlam=-2.0*xmu/3.0
call stress3(3,xmu,xlam,detf,stret,princ,sigma,sprin)
ystrs0=props(5,im)
hparam=props(6,im)
eqstrn=stato(1,ig,ie)
call yfunc17(sprin,sprinn,ystrs0,hparam,eqstrn,yfunc)

The trial left Cauchy–Green tensor, given by Equation (7.41), is evaluated in
trlcg with jacobi calculating the associated principal directions and stretches.
stress3 is now employed to find the trial principal (see Equation (7.43a,b)) and
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Cartesian deviatoric Kirchhoff stresses which enables the yield function to be
evaluated in accordance with Equation (7.20a,b).

elemtk segment 12 – Elasto-plastic in principal directions (2)

if(yfunc.le.0.0) then
xmu=props(2,im)/detf
xlam=-2.0*xmu/3.0
call stress3(3,xmu,xlam,detf,stret,princ,sigma,sprin)
call addpres(ndime,press,sigma)
call cprinc(ndime,xlam,xmu,stret,princ,sprin,ctens)
call cvolum(ndime,press,ctens)

For the elastic case stress3 is reused (with revised μ) to calculate the devi-
atoric Cauchy principal stresses and deviatoric Cartesian stresses. The pressure
found in segment 2 is now added to the deviatoric Cartesian stress components in
addpres. The elastic deviatoric and volumetric components of tangent modulus
are identical to that given in segment 9, for Materials 3 and 5 respectively.

elemtk segment 13 – Elasto-plastic in principal directions (3)

else
call radialrtn(xmu,hparam,yfunc,sprin,sprinn,princ,stret,

& vnorm,dgamma,btens)
call strsP2C(ndime,princ,sigma,sprin,detf)
call addpres(ndime,press,sigma)
call cprinep(ndime,xmu,stret,princ,sprin,detf,vnorm,

& dgamma,hparam,sprinn,ctens)
call cvolum(ndime,press,ctens)
call newstate(ndime,finvr,btens,dgamma,

& statn(1,ig,ie),stato(1,ig,ie))
endif

endif

For the plastic case the radial return algorithm given by Equations (7.59) and
(7.60) is implemented in radialrtn to find the incremental plastic multiplier
dgamma and the deviatoric Kirchhoff principal stresses. In addition, radialrtn
evaluates the elastic left Cauchy–Green tensor given by Equation (7.49). The Carte-
sian deviatoric Cauchy stresses are now found in strsP2C using Equation (6.81)
and added to the pressure in addpres (see segment 12). The deviatoric compo-
nent of the tangent modulus, given by Equation (7.62a), is evaluated in cprinep
and added to the volumetric component in cvolume. Finally, newstate updates
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the state variables, namely, the Von Mises equivalent strain (Equation (7.61)) and
the inverse of plastic right Cauchy–Green tensor given by Equation (7.51a,b)b.

elemtk segment 14 – Internal forces and tangent stiffness

call internal(ndime,nnode,lnods(1,ie),ldgof,sigma,
& elecd(1,1,ig),vinc(ig),resid,react)

call kconst(ndime,nnode,lnods(1,ie),ldgof,ctens,
& elecd(1,1,ig),vinc(ig),kprof,stifd,stifp)
&

call ksigma(ndime,nnode,lnods(1,ie),ldgof,sigma,
& elecd(1,1,ig),vinc(ig),kprof, stifd,stifp)

ks=1
do id=1,ndime

do jd=id,ndime
stres(ks,ig,ie)=sigma(id,jd)
ks=ks+1

enddo
enddo

enddo
enddo
return
end

Recalling that we remain within the Gauss loop, the Cauchy stress components
and the Cartesian derivatives of the shape functions are used in routine internal to
compute and assemble the equivalent nodal forces T employing Equations (9.15a–
c). Subroutine kconst then evaluates and assembles the constitutive component
of the tangent matrix according to the indicial Equation (9.35). The initial stress
matrix is obtained and assembled in ksigma using Equation (9.44c). This routine
will be described in detail in the next section. Finally, the stresses are copied into
the array stress ready for the output routine.

10.10 ROUTINE radialrtn

radialrtn – Radial return algorithm

subroutine radialrtn(xmu,hparam,yfunc,sprin,sprinn, princ,tstret,
& vnorm,dgamma,btens)

implicit double precision (a-h,o-z)
dimension sprin(3),stretn(3),princ(3,3),tstret(3),vnorm(3),btens(3,3)
do id=1,3
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vnorm(id)=sprin(id)/sprinn
enddo
dgamma=yfunc/(3.0*xmu+hparam)
do id=1,3

stretn(id)=exp( log(tstret(id))-dgamma*vnorm(id) )
enddo
factor=1.0-(2.0*xmu*dgamma/sprinn)
do id=1,3

sprin(id)=factor*sprin(id)
enddo
do id=1,3

do jd=1,3
sum=0.0
do ialpha=1,3

stretn2=stretn(ialpha)*stretn(ialpha)
sum=sum+stretn2*princ(id,ialpha)*princ(jd,ialpha)

enddo
btens(id,jd)=sum

enddo
enddo
return
end

The radial return algorithm is described in Section 7.6.1 and summarized in
Material 10.17. The vector, vnorm, normal to the yield surface is given by Equa-
tion (7.54a,b) and the incrematral plastic multiplier, dgamma, by Equation (7.59).
Trial stretches stretn are evaluated using Equation (7.45a,b). The radial return
operation uses factor to give the deviatoric Kirchhoff principal stresses sprin
using Equation (7.60). Finally, the updated left Cauchy–Green tensor btens is
evaluated using Equation (7.49).

10.11 ROUTINE ksigma

Although all stiffness matrix calculations are a direct implementation of the rele-
vant equations given in the text, it is instructive to consider the computation and
assembly of the initial stress matrix Kσ, which is of particular significance in finite
deformation analysis.

ksigma segment 1 – Stiffness coefficient evaluation

subroutine ksigma(ndime,nnode,lnods,ldgof,sigma,
& gradn,vinc,kprof,stifd,stifp)
implicit double precision (a-h,o-z)
dimension lnods(nnode),ldgof(ndime,*),sigma(3,3),

& gradn(ndime,nnode),kprof(*),stifd(*),stifp(*)
(continued)
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do in=1,nnode
ip=lnods(in)
do jn=in,nnode

jp=lnods(jn)
sum=0.0
do kd=1,ndime

do ld=1,ndime
sum=sum+gradn(kd,in)*sigma(kd,ld)*gradn(ld,jn)*vinc

enddo
enddo

This routine is called from elemtk within a Gauss and element loop. The array
gradn contains the current Cartesian derivatives ∂Na/∂xi, and the variable sum is
computed according to Equation (9.44c).

ksigma segment 2 – Assembly

do id=1,ndime
if=ldgof(id,ip)
jf=ldgof(id,jp)
if((if.le.0).or.(jf.le.0)) goto 10
if(jf.eq.if) then

stifd(if)=stifd(if)+sum
else

jc=max(jf,if)
ir=min(jf,if)
lp=kprof(jc)-jc+ir+1
stifp(lp)=stifp(lp)+sum

endif
10 enddo

enddo
enddo
return
end

Variables if and jf indicate the degree-of-freedom numbers corresponding
to the direction id of nodes in and jn. When both if and jf are active and
therefore positive, the value stored in sum needs to be assembled. For the case
where if is equal to jf, this value is added to the diagonal stiffness vector stifp.
Otherwise, the correct position in stifp is obtained using kprof as explained in
Section 10.5.
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10.12 ROUTINE bpress

bpress segment 1 – Surface element loop

subroutine bpress(ndime,nnodb,ngaub,nbpel,xlamb,elbdb,lbnod,press,x,
& ldgof,tload,react,resid,kprof,stifd,stifp)
implicit double precision (a-h,o-z)
dimension elbdb(ndime,nnodb+1,*),lbnod(nnodb,*), press(*),x(ndime,*),

& ldgof(ndime,*),tload(*),react(*),resid(*),kprof(*), &
stifd(*),stifp(*),dxis(3,2)

data ((dxis(i,j),i=1,3),j=1,2) /0.,0.,0.,0.,0.,0./
if(nbpel.eq.0) return
do ie=1,nbpel

epres=press(ie)
do ig=1,ngaub

bpress segment 2 – Equivalent forces and stiffness component

if(ndime.eq.2) dxis(3,2)=-1.
do id=1,ndime

do jd=1,ndime-1
dxis(id,jd)=0.0
do in=1,nnodb

ip=lbnod(in,ie)
dxis(id,jd)=dxis(id,jd)+x(id,ip)* elbdb(jd+1,in,ig)

enddo
enddo

enddo
call pforce(ndime,nnodb,epres,xlamb,elbdb(1,1,ig),

& lbnod(1,ie),ldgof,tload,resid,react, dxis)
apres=epres*xlamb

call kpress(ndime,nnodb,apres,elbdb(1,1,ig),
& lbnod(1,ie),ldgof,dxis,kprof,stifd,stifp)

enddo
enddo
return
end

For cases where there are surface or line elements with pressure applied, this
routine first loops over these elements and then over their Gauss points. At Gauss
point, the tangent vectors ∂x/∂ξ and ∂x/∂η are evaluated. For two-dimensional
cases the vector ∂x/∂η is set to [0, 0,−1]T , so that when the cross product with
∂x/∂ξ is taken the correct normal vector is obtained. These tangent vectors are
stored in the arraydxis. Using these vectors and the pressure valueepress, the rou-
tine pface evaluates and assembles into tload in a standard manner the equivalent
nodal force components corresponding to this Gauss point using Equation (9.15c).
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At the same time, these nodal forces are added to the residual force vector and to the
reaction vector. Finally, the routine kpress is called to evaluate the initial pressure
stiffness component.

10.13 EXAMPLES

A limited number of examples are described in this section in order to show the
capabilities of FLagSHyP and illustrate some of the difficulties that may arise in the
analysis of highly nonlinear problems. Where appropriate, the yield stress is chosen
to give obvious finite deformation elastic behavior prior to the onset of plasticity.

10.13.1 Simple Patch Test

As a simple check on the code the nonlinear plane strain patch test example shown
in Figure 10.5 is studied. Two irregular six-noded elements making up a square
are employed and boundary displacements are prescribed as shown in the figure in
order to obtain a uniform deformation gradient tensor given by

F =
[

2 0
0 3/4

]
; J = 3/2.

Assuming Material 1 with values λ = 100 and μ = 100, the program gives the
correct state of uniform stress that can be evaluated from Equation (6.29) as

σ =
μ

J
(b − I) +

λ

J
(ln J)I =

[
227.03 0

0 −2.136

]
; b = FF T =

[
4 0
0 9/16

]
.

y

x

1/4

1/2 1

2

1

3/4

1

1

1/4

1

1/4

FIGURE 10.5 Patch test.
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10.13.2 Nonlinear Truss

Plane stress truss: The nonlinear truss example already described in Chapter 1,
Section 1.3.2, can now be re-examined. For this purpose, a single four-noded ele-
ment is used with the support conditions shown in Figure 10.6(a). In order to
minimize the two-dimensional effects a large length-to-thickness ratio of approx-
imately 100 is used. The initial angle is 45◦ as in Figure 1.5 of Chapter 1 and the
initial thickness is set to 1/

√
2 so that the initial area of the truss is 1. Material 8

is used with μ = 1/3, which for ν = 0.5 implies E = 1. The displacement of
the top node is prescribed either upward or downward in small increments of 0.5.
The resulting vertical force is shown in Figure 10.6(b) and is practically identical
to that obtained in Section 1.3.2 using the logarithmic strain equation and shown
in Figure 1.5.

It is worth noting that when the truss is pushed downward and reaches the
−45◦ position, the program appears to fail to converge. The reason for this is sim-
ply that at this position the stresses in the truss, and hence all the reactions, are
zero to within machine accuracy. Consequently, when the convergence norm is
evaluated by dividing the norm of the residuals by the norm of the reactions a
practically random number is obtained. In order to escape from this impasse, an
artificially large convergence norm must be chosen for the increment that corre-
sponds to this position (0.98 has been used by the authors). The computation can
then be continued using normal convergence norms for the rest of the increments.
Note that the restarting facilities in FLagSHyP enable this artifice to be easily
performed.
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FIGURE 10.6 Plane stress truss example: (a) Geometry; (b) Load-displacement curve.
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Solid truss: The elasto-plastic single truss element example given in Chapter
3, Section 3.6.1, is now repeated using a single eight-node hexahedron element
with the same dimensions and boundary conditions as those given in the above
Figure 10.6(a). In order to maintain a value ofYoung’s modulus of 210 000 kN/mm2

and a Poisson’s ratio of 0.3, the corresponding constants for material 17 are
μ = 80 769.23 kN/mm2 and λ = 121 153.86 kN/mm2 the yield stress and hard-
ening parameters remaining the same at τy = 25 000.0 kN/mm2 and 1.0 respec-
tively. The analysis was carried out using a fixed arclength of 5.0. Elastic and
elasto-plastic load deflection curves are shown in Figure 10.7 (the Z axis now
being the vertical direction) which coincide with the results using the single truss
element, the elastic analysis being achieved with an artificially high yield stress.

10.13.3 Strip With a Hole

This is a well-known plane stress hyperelasticity example where an initial 6.5 ×
6.5 × 0.079 mm3 strip with a hole 0.5 mm in diameter is stretched in the hori-
zontal direction and constrained in the vertical direction as shown in Figure 10.8.
Given the two planes of symmetry, 100 four-noded quadrilateral elements are used
to describe a quarter of the problem. A plane stress incompressible neo-Hookean
material model is used with μ = 0.4225 N/mm2. The strip is stretched to six times
its horizontal length using only five increments. The load-displacement curve is
shown in Figure 10.8(b), and Figure 10.8(c) displays the final mesh.
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FIGURE 10.7 Solid truss example: elastic and elasto-plastic load-displacement curves.
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FIGURE 10.8 Strip with hole: (a) Geometry; (b) Load-stretch curve; (c) Final mesh.

10.13.4 Plane Strain Nearly Incompressible Strip

This well-known example has been included in order to illustrate the difficulties
that can be encountered using the penalty type of nearly incompressible plane strain
or three-dimensional materials implemented in FLagSHyP in conjunction with a
displacement control process. In this case a 20 × 20 mm2 strip is clamped and
stretched as shown in Figure 10.9. Because of the symmetry, only a quarter of the

20 mm

20
 m

m

(a)

(b)

FIGURE 10.9 Incompressible strip: (a) Geometry; (b) Final mesh.
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problem is actually modeled using 256 four-noded mean dilatation quadrilateral
elements. Material 5 is used with μ = 0.4225 N/mm2 and κ = 5 N/mm2. The final
mesh is shown in Figure 10.9(b), where for a total horizontal stretch of three a
vertical stretch of 0.3711 is observed (smaller values are obtained as κ is increased
to reach the incompressible limit).

Although the material is slightly compressible (ν ≈ 0.46), the solution
requires 200 increments in order to ensure that the Newton–Raphson iterative
process reaches convergence in a reasonable number of steps. In fact, if the
value of κ is increased in order to approach the incompressible limit (say 50
or 500), an even larger number of increments are needed. This is in clear con-
trast with the previous example, which could be run in five increments. Unfor-
tunately, using large increments in the present case leads to large changes in
the volumes of those elements containing nodes with prescribed displacements,
which, because of the relatively large bulk modulus, give extremely large inter-
nal pressures at these elements. These unrealistic pressure values lead in turn
to very large residual forces from which the Newton–Raphson process fails
to converge. This problem is typically solved using the augmented Lagrangian
technique whereby equilibrium is first reached using small initial values of κ,
which are then progressively increased, always maintaining equilibrium by fur-
ther iterations if necessary, until the desired κ/μ ratio is reached. This tech-
nique enables very large final values of κ/μ to be used without increasing the
number of increments needed. In order to keep the code as simple as possible,
however, this technique has not been implemented in FLagSHyP, which implies
that a very large number of increments are needed for plane strain or three-
dimensional problems involving true incompressible materials and displacement
control.

10.13.5 Elasto-plastic Cantilever

This example shows the elastic and elasto-plastic behavior of a cantilever under-
going finite deformations. The geometry is shown in Figure 10.10(a), where 20, 2,
and 8 hexa8 elements are used in the X , Y , and Z directions respectively. The con-
stants for Material 17 are μ = 80 769.23 kN/mm2 and λ = 121 153.86 kN/mm2,
the yield stress and hardening parameters being τy = 2500.0 kN/mm2 and 1.0
corresponding to a value of Young’s modulus of 210 000 kN/mm2 and a Poisson’s
ratio of 0.3 respectively. The elastic analysis is carried out with an artificially high
yield stress. In both elastic and elasto-plastic cases a variable arclength is used.
Figures 10.10(b,d) show the load deflection behavior at the tip of the cantilever,
whilst Figure 10.10(c) shows the development of plasticity at the support for a



10.13 E X A M P L E S 307

0
0 25 50 75 100 125 150

500

1000

1500

2000

Vertical end displacement (mm)

F (N)

Elastic

Plastic

60
80

100
120

140
160

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

0

5000

10 000

15 000

20 000

25 000

30 000

0 50 100 150 200
Vertical end displacement (mm)

F (N)

Elastic

Plastic

(a)

(b)

(c)

(d)

Y

XF

8

Z
2

160

FIGURE 10.10 Large deflection elasto-plastic behavior of a cantilever: (a) Geometry; (b)
Detail of force deflection behavior; (c) Deformation showing yielding at the support at a load
of 788.18 N; (d) Overall force deflection behavior.

load of 788.18 N. Observe that Figure 10.10(c) shows coordinates and not the
displacement at the loaded point. Also, note that an analysis will fail when the tan-
gent matrix looses its positive definite nature for this material model. Essentially,
the simple logarithmic stretch-based constitutive model is only valid for moderate
deformations, even though displacements may be large.
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10.14 APPENDIX: DICTIONARY OF MAIN VARIABLES

The main variables of FLagSHyP are listed below in alphabetical order:

afail – logical arclength failure indicator
arcln – arc-length parameter (=0.0 means no arc length)

btens – left Cauchy–Green tensor

cload – current loads
cnorm – convergence norm
ctens – fourth-order tensor c ijkl

detf – determinant of F (i.e. J)
dgamma – incremental Von Mises equivalent plastic strain
dispf – load component of the displacement vector uF

displ – Newton–Raphson displacement vector u
dlamb – load parameter increment
dxis – derivatives of geometry with respect to

isoparametric coordinates

elacd – element average Cartesian derivatives
elbdb – boundary elements data
elecd – element Cartesian derivatives at each Gauss point
eledb – element data matrix of dimensions

(ndime+1,nnode+1,ngaus)
eload – external nominal load on each degree of freedom
eltyp – element type
energy – energy norm for equations (rhs * soln)
eta – scaling factor or displacement factor
eta0 – previous value of the parameter eta

farcl – logical fixed arc-length indicator

gradn – Cartesian gradient of shape functions
gravt – gravity acceleration vector

hparam – hardening parameter

icode – nodal boundary codes
ie – element number
incrm – load increment number
incount – output counter
itarget – target iteration/increment for variable

arc-length option
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iwant – output degree of freedom associated with nwant

jfile – unit number for printed output of warning
messages

kprof – first height of each profile column
then address in stifp of each column

lbnod – boundary elements nodal connectivities
ldgof – array containing the degrees of freedom

of each node or 0 for fixed nodes. If
the coordinates of these fixed nodes is
to be prescribed, the number stored will
be the prescribed displacement number

lnods – nodal connectivities of dimensions
(nnode,nelem)

lun – logical input–output unit

matno – material number of each element
matyp – material types
mbpel – maximum number of boundary pressure elements
mdgof – maximum number of degrees of freedom
melem – maximum number of elements
mgaus – maximum number of Gauss points per element
miter – maximum number of iterations per increment
mmats – maximum number of materials
mnode – maximum number of nodes per element
mpoin – maximum number of nodes
mprof – maximum number of off-diagonal terms in

tangent matrix

nbpel – number of boundary elements with applied pressure
nconn – nodal connectivities as a linked list of

dimensions (two, total number of node to
node connections)

ndgof – number of degrees of freedom
ndime – number of dimensions for the given element
ndque – circular queue, storing next nodes’

degrees of freedom to be numbered
negdf – number of fixed degrees of freedom
nelem – number of elements
neq – number of equations to be solved
ngaub – number of Gauss points per boundary element
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ngaus – number of Gauss points per element
nincr – number of load increments
niter – number of iterations
nnodb – number of nodes per boundary element
nnode – number of nodes per element
nmats – number of materials
nplas – element plastic indicator
npoin – number of mesh nodes
nprof – number of entries in the out of diagonal

part of K
nprs – number of prescribed displacements
nstat – number of state variables
nstrs – number of stresses per Gauss point
nwant – single output node

pdisp – prescribed displacements of fixed nodes
press – external applied pressures

and (locally) mean stress
princ – matrix containing the three principal

column vectors
props – vector of properties. The first is

always the initial density, the rest
depend on the material type

react – reactions
resid – residual forces
rest – logical variable: .true. if problem is

restarted .false. if problem started
from scratch

rnorm – residual norm
rtu – current dot product of R by u
rtu0 – initial dot product of R by u

searc – line-search parameter (=0.0 means no
line search)

sigma – Cauchy stress tensor
sprin – principal stresses

(type depending on context)
stato – converged state variables
statn – iterative state variables
stifd – diagonal stiffness
stifp – profile part of stiffness
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stres – element stresses
stret – vector containing the stretches

theta – average value of J

title – program or example title
tload – total nominal loads including pressure
tstret – trial stretches

u – solution of equations

vinc – determinant of Jacobian J at each Gauss
point

vnorm – vector normal to yield surface
vol0 – initial element volumes

x – nodal coordinates
xincr – total displacement over the load

increment
xkapp – effective kappa value
xlamb – current load factor
xlmax – maximum load parameter
xme – effective mu coefficient
xmu – mu coefficient
x0 – initial nodal coordinates

yfunc – yield surface value
ystrs0 – initial Kirchhoff yield stress
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Almansi strain, 5
physical interpretation of, 104
tensor, 102, 110

alternating tensor, 42
angular velocity vector, 127
arc-length method, 261
area change, 115
area ratio, 144
assembly process, 244, 254
augmented Lagrangian method, 306

backward Euler time integration, 83, 206
bifurcation point, 3, 4
Biot stress tensor, 150
body forces, 136, 139, 144

linearization of, 221
buckling, 4
bulk modulus, 171, 181, 270

cantilever
elasto-plastic, 306
simple, 2

Cartesian coordinates, 23, 95
Cauchy stress, 6

uniaxial, 63
Cauchy stress tensor, 137, see stress tensor

in principal directions, 138
objectivity of, 138
symmetry of, 142

Cauchy-Green tensor, see right and left Cauchy-Green
tensor

column
simple, 3

compressible neo-Hookean material, 162
computer implementation, 266–311

constitutive equations, 270, 277–284
element numbering, 276
element types, 269, 276
Gauss point numbering, 276
internet address, 267
output file, 273

program structure, 283–302
solution algorithm, 284
solver, 277
user instructions, 267

computer program
FLagSHyP, xix
simple, xvii, 18, 19

conservation of mass, 112
rate form, 130

consistency condition, 79
consistency parameter, 78, 198

incremental, 206, 209
constitutive

equation summaries, 277–284
equations, 155
matrix, 249
tangent matrix, 248

continuity equation, 112, 130
convective

derivative, 120
stress rate, 153

cross product, see vector product

deformation gradient, 98
discretized, 238
distortional, 112
elastic component, 189
in principal directions, 108
incremental(Q.2), 132
linearized, 116
mean, 233
plastic component, 189
polar decomposition, 105–110
time derivative of, 121

density, 96
determinant of a tensor, 40

linearization of, 16, 55
deviatoric stress tensor, 151
deviatoric tensor, 46
dilatation

pure, 165, 172
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directional derivative, 13–16, 47–57
function minimization, 54
linearity of, 52
of a determinant, 16, 55
of inverse of a tensor, 56
of volume element, 118
properties of, 52
relation to time rates, 120

discretized equilibrium equations
matrix-vector form, 245
tensor form, 243

distortional
deformation gradient, 112
stretches, 181

distortional strain energy, 168, 169, 181
divergence, 59

discretized average, 257
properties of, 59

divergence theorem, 61
dot product, see vectors
double contraction, 39

properties of, 39, 43, 45
double product, see double contraction
dyadic product, see tensor product

e-mail addresses, 267
eigenvectors and eigenvalues

of second order tensor, 40
Einstein summation convention, 23
elastic potential

compressible neo-Hookean, 162
general, 156
incompressible neo-Hookean, 169
Mooney-Rivlin, 170
nearly incompressible, 171
St. Venant-Kirchhoff, 158

elastic potential in principal directions, 174
nearly incompressible, 181
plane strain, 183
plane stress, 183
simple stretch based, 179
uniaxial, 185

elasticity tensor, 44, 47, see isotropic elasticity tensor
Eulerian (spatial), 159, 164, 173, 178, 183
Lagrangian (material), 158, 163, 177

element numbering, 276
engineering strain, 5
equilibrium equations

differential, 141, 146
discretized, 242–246
linearized, 217
rotational, 141
translational, 139
truss, 70

equivalent nodal forces
external, 243
internal, 243, 246
internal truss, 68

equivalent stress, see Von Mises equivalent stress
Euler buckling load, 4
Eulerian (spatial) elasticity tensor, 158, 170, 178
Eulerian description, 96

Eulerian strain tensor, see Almansi strain
examples, see finite element analysis

trusses, 89

Finger tensor, 101, see left Cauchy-Green tensor
finite deformation analysis, 94, 95
finite element analysis

elasto-plastic cantilever, 306
elasto-plastic single element, 304
hyperelastic single element, 303
plane strain strip, 306
simple patch test, 302
strip with a hole, 304

finite element method
summary, 2

first Piola-Kirchhoff stress tensor, see stress tensor
FLagSHyP, 65
flow rule, 193

in principal directions, 202
incremental, 206
uniaxial, 78

fourth order tensor, 44–47
deviatoric, 46
identity, 45
isotropic, 46
skew, 46
symmetric, 46

frame indifference, 152, see objectivity
inelastic aspects of, 192

function minimization, see directional derivative

Gauss point numbering, 276
Gauss theorem, 61
generalized strain measures, 110
geometric stiffness, see initial stress stiffness
gradient, 58

properties of, 59
Green (or Green’s) strain, 5, 12

linearized, 117
physical interpretation of, 103, 104
tensor, 102, 110
time derivative, 123, 127

Green-Naghdi stress rate, 153

hardening parameter, 78, 198
homogenous potential, 168
Hu-Washizu variational principle

six field, 236
three field, 229

hydrostatic pressure, see pressure
hyperelasticity

definition, 156
incompressible and nearly incompressible,

166–173
isotropic, 160–166
isotropic in principal directions, 174–185
simple stretch based, 179
uniaxial, 69, 70, 185

identity tensor, 28
incompressibility

Lagrange multiplier approach, 226
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incompressibility (cont.)
mean dilatation technique, 231, 256
penalty method, 228

incompressible materials, 166–173
incremental Kinematics

uniaxial, 80
incremental kinematics

in plasticity, 204
incremental plastic multiplier, 83, 85, 209
inelastic behaviour

three dimensional, 188–211
algorithm, 212

three dimensional truss, 74–88
algorithm, 88

two dimensional, 211
initial stress stiffness, 10, 251, 264
integration theorems, 60
internal equivalent nodal forces, see equivalent

forces
internal virtual work, 144
invariants

of left Cauchy-Green tensor, 161
of right Cauchy-Green tensor, 160
second order tensor, 38–41
vector, 38

inverse of second order tensor, 29
isochoric, see distortional
isoparametric element

geometry interpolation, 237
isotropic elasticity tensor

compressible neo-Hookean, 164
nearly incompressible hyperelastic, 173
nearly incompressible hyperelastic in principal

directions, 183
isotropic material

definition, 160
isotropic tensors, 37, 42, 46

Jacobean, 111, 114
Jaumann stress rate, 153

Kelvin effect, 165
kinematics

definition, 94
discretized, 237
uniaxial, 65

Kirchhoff stress
uniaxial, 63, 69

Kirchhoff stress tensor, 144

Lagrange multipliers (for incompressibility), 226
Lagrangian (material) elasticity tensor, 158, 170, 172,

177
Lagrangian description, 96
Lagrangian strain tensor, see Green strain
Lamé coefficients, 47, 164, 270

effective, 164, 184
left Cauchy-Green tensor, 101, 107

discretized, 239
elastic, 191

in principal directions, 200
rate, 193

trial elastic, 205
updated elastic, 207

Lie derivative, 125, 153, 159
limit points, 8, 261
line search method, 260
linear stability analysis, 4
linearization, 13–16

function minimization, 54
of a determinant, 16, 55
of algebraic equations, 16, 53
of inverse of tensor, 56
uniaxial kinematics, 67

linearized
deformation gradient, 116
Eulerian external virtual work, 221–224
Eulerian internal virtual work, 220
Lagrangian (Green’s) strain, 117
Lagrangian internal virtual work, 218
left Cauchy-Green tensor, 117
right Cauchy-Green tensor, 117
virtual work, 217
volume change, 118

load increments, 17, 258
loading/unloading conditions, 79
locking

shear (ex.8.4), 233
volumetric, 229, 233, 256

logarithmic strain, 5
additive decomposition, 75
material, 110
spatial, 110
uniaxial, 66

mass conservation, see conservation of mass
material description, 96

uniaxial motion illustration, 96
material elasticity tensor, see Lagrangian elasticity

tensor
material strain rate tensor, 123, see Green strain
material time derivative, 119
material vector triad, 107
material virtual work equation, see virtual work

equation
maximum plastic dissipation principle, 78
mean dilatation technique, 231

discretization of, 256
multiplicative decomposition

of deformation gradient, 190
uniaxial stretch, 75

natural strain, 5, see logarithmic strain
nearly incompressible materials, 171

in principal directions, 180
neo-Hookean material

compressible, 162
incompressible, 169

Newton–Raphson method, 13, 17, 71, 88
convergence, 21
modified, 21
solution algorithm, 18

Newton-Raphson method, 47–52, 54, 258
solution algorithm, 259
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nodes, 237
numbering of, 276, 277

nonlinear computational mechanics
definition, 1

nonlinear equations, 16
general solution, 49–52

objectivity, 130
Cauchy stress, 138
second Piola–Kirchhoff tensor, 152
stress rates, 152

Ogden material (ex.6.5), 187
Oldroyd stress rate, 153
orthogonal tensor, 30
out of balance force, see residual force

patch test, 302
path-dependent material, 64
penalty method

for incompressibility, 228
penalty number, 171, 181
perturbed Lagrangian functional, 228
Piola transformation, 149, 152
Piola-Kirchhoff stress tensors, see stress tensor

first, 156
second, 10, 157

planar deformation (ex.4.3), 133
plane strain, 183
plane stress, 183
plastic

modulus, 78
multiplier, see consistency parameter
rate of deformation, 195
uniaxial strain, 78
uniaxial strain rate, 78

plasticity, 64, see rate independent plasticity
Poisson’s ratio, 47, 180, 184
polar decomposition, 30, 105–110
pressure, 151, 167, 171

uniform element, 256
pressure force

enclosed boundary case, 223
linearization of, 222

principal Cauchy stress, 138, 175, 179, 184
principal directions, 105–110, 127, 138

isotropic elasticity, 174–185
nearly incompressible material, 180

principle of maximum plastic dissipation,
196, 198

principle of virtual work, 142–149
material, 148
spatial, 143

pull back, 99, 124, 125, 148, 159
pull-back, 104, 149, 153, 219
pure dilatation, see dilatation
push forward, 99, 124, 159, 170
push-forward, 104, 107, 149, 153,

173, 219

rate independent placticity
uniaxial, 76

rate independent plasticity

general, 197
in principal directions, 200–204

rate of deformation tensor, 124
physical interpretation, 124

rate of volume change, 129
residual force, 7, 141, 242, 244, 245
return mapping

general, 194
uniaxial, 84, 85

return-mapping, 64, 207
right Cauchy-Green tensor, 101, 105

discretized, 239
distortional, 113
elastic component, 190
plane stress, 185
plastic component, 190
updated plastic component, 207

rigid body motion, 125, 130
rotation tensor, 105
rotational equilibrium, 141

second order tensor, 41
inverse, 29
isotropic, 37
linearity of, 28
orthogonal, 30
skew, 29
symmetric, 29
trace, 38
transpose, 29
two-point, 99

second Piola-Kirchhoff stress tensor,
see stress tensors

second-order tensor, 28
shape functions, 238
shear

simple, 114, 165, 172
shear locking, see locking
simply supported beam, 54
skew tensor, 29, 34
small strain tensor, 10, 117
snap back behavior, 261
snap-through behavior, 8
spatial description, 96

uniaxial motion illustration, 96
spatial elasticity tensor, see Eulerian elasticity tensor,

see elasticity tensor
spatial vector triad, 107
spatial virtual work equation, see virtual work

equation
spin tensor, 126
St. Venant–Kirchhoff Material, 158
stiffness, see tangent stiffness matrix

one degree of freedom, 9
strain energy function, see elastic potential and

volumetric strain energy
elastic, 191
general, 156
uniaxial, 69, 70

strain measures, see Almansi, engineering, Green,
logarithmic

one dimensional nonlinear, 5
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stress rates
convective, 153
Green-Naghdi, 153
Jaumann, 153
Oldroyd, 153
Truesdell, 152

stress tensor, 37
Cauchy, 6, 134–139, 161, 163, 169, 179, 184
deviatoric, 151
first Piola-Kirchhoff, 145, 156
Kirchhoff, 144, 191

in principal directions, 200
Kirchhoff stress, 191
physical interpretations, 146, 149
second Piola-Kirchhoff, 148, 149, 157, 161, 163,

168, 171, 175, 191
trial deviatoric Kirchhoff, 205
updated trial deviatoric Kirchhoff, 208, 209

stress tensors
second Piola-Kirchhoff, 10

stress update
uniaxial, 83

stress vector, 245
stretch

elastic, 200
stretch (uniaxial), 63, 65

elastic, 75
plastic, 75

stretch tensor
material, 105
spatial, 107

stretches
in principal directions, 107

surface forces, see pressure force
linearization of, 222

symmetric tensor, 29, 46

tangent (stiffness) matrix, 17, 86, 247
consitutive component

indicial form, 248
matrix form, 250

dilatational component, 257
external force (pressure) component, 253
initial stress component, 251
source of, 217, 247
truss (elastic), 72

tangent matrix, 54
tangent modulus, see elasticity tensor

algorithmic, 209
continuum

elastic, 210
elasto-plastic, 210

uniaxial (definition), 64
uniaxial (elastic), 74
uniaxial (elasto-plastic), 86, 88

Taylor’s series expansion, 50
tensor analysis, see gradient, divergence, integration

theorems
tensor product, 31

components of, 33
properties of, 31

third order tensor, 41–44

time Integration, 83
total potential energy, 14, 54, 225
trace of second order tensor

definition, 38
properties, 39

traction vector, 134, 137, 144
transformation tensor, 30
translational equilibrium, 139
transpose of second order tensor, 29
trial

deviatoric Kirchhoff stress, 205
elastic left Cauchy-Green tensor, 205
uniaxial elastic stretch, 81, 84
uniaxial Kirchhoff stress, 84

Truesdell stress rate, 152
truss member

analysis, see examples
general elasto-plastic, 63
simple one degree of freedom, 6

two-point tensor, 99, 106, 108, 145

user instructions for computer program FLagSHyP,
267

variational statement, see Hu-Washizu, see total
potential energy

vectors, 23–28
modulus (magnitude) of, 38
scalar product, 24
transformation of, 25–28
vector (cross) product, 27

velocity, 119
velocity gradient tensor, 122
virtual work

principle of, 142
virtual work equation

association with directional derivative, 16, 225
discretized, 245
linearization, 217
material, 148
spatial, 143

Voigt notation, 245
volume change, 111

linearized, 118
rate of, 129
uniaxial, 66, 69

volumetric locking, see locking
volumetric strain energy, 171, 181
Von Mises

equivalent plastic strain, 199, 209, see incremental
plastic multiplier

equivalent stress, 198, 199
plasticity, 197

work conjugacy, 144, 194
WWW address, 267

yield condition
uniaxial, 78

yield surface, 197
vector normal to, 202, 208

Young’s modulus, 7, 47, 180, 185
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