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PREFACE

This worked examples text is intended primarily as a companion to the
second edition of the textbook Nonlinear Continuum Mechanics for Finite
Element Analysis by Javier Bonet and Richard D. Wood. However, to be
reasonably self-contained, where necessary key equations from the textbook
are replicated in each chapter.

Textbook equation numbers given at the beginning of each chapter are
indicated in square brackets.

Exercises are presented in a mix of direct (tensor), matrix, or indicial
notation, whichever provides the greater clarity. Indicial notation is used
only when strictly necessary and with summations clearly indicated.

The textbook is augmented by a website, www.flagshyp.com, which
contains corrections, software, and sample input data. Updates to this
worked examples text will also be included on the website as necessary.

viii



 

C H A P T E R O N E

INTRODUCTION

In this chapter a number of very simple rigid link-spring structures are
considered which illustrate many features of nonlinear behavior often asso-
ciated with more complex structures.

EXAMPLE 1.1

The structure shown in Figure 1.1 comprises a rigid weightless rod a − b

supported by a spring of stiffness k. The force F is positive downward as
is the vertical displacement v.
(a) Find the equilibrium equation relating F to the slope angle θ and then
plot F against the vertical displacement v.
(b) Also determine the directional derivative of F with respect to a change
β in θ.

This simple example illustrates the phenomenon known as snap-
through behavior.

Solution

(a) When considering a finite deformation problem, the equilibrium equa-
tion must be established in the deformed position. Consideration of the
vertical equilibrium of joint a gives

F = T sin θ ; T =
F

sin θ
, (1.1)

1
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FIGURE 1.1 Rod spring structure

where T is the compressive force in the rod ab. The horizontal equilibrium
equation for joint b is found in terms of the tensile force in the spring
S = ku as

T cos θ = S. (1.2)

Geometrical considerations yield the displacements u and v in terms of the
deformed angle θ as

u = 10 cos θ − 6 ; v = 8 − 10 sin θ. (1.3)

Substituting Equation (1.1) into Equation (1.2) gives F as a function of θ

as

F = k tan θ(10 cos θ − 6), (1.4)

which together with Equation (1.3) enables Figure 1.2 to be drawn.
Note that all points on the plot in Figure 1.2 represent positions of

equilibrium. Also observe that for some values of F three equilibrium
positions are possible. Indeed, it will be seen in Chapter 3 that multiple
positions often are in equilibrium for a given load.

Although not demonstrated here, the positions between the upper and
lower peaks are positions of unstable equilibrium. The plot is drawn by
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FIGURE 1.2 Rod spring–equilibrium path

choosing a value of θ and calculating F and v; however in practice it is
more likely that the force F will determine the value of θ and hence v.
The resulting nonlinear solution technique will involve the determination
of v as F is gradually incremented at least until the first peak is reached
at about v ≈ 2.5 when a small increase in F will result in a solution in
the region of v ≈ 16.5. This sudden movement (dynamic in reality) is
called snap-through behavior. Although shallow domes can exhibit such
undesirable behavior, snap-through behavior is beneficially employed in
everyday life, in light switches, bottle caps, children’s hair clips, and many
other applications.
(b) The single degree of freedom nature of this example enables nonlin-
ear solutions to be discovered extremely easily, however in reality this is
not the case and nonlinear solution techniques need to be devised. Here
the Newton–Raphson iterative procedure predominates, which requires
the concept of linearization of a nonlinear function which involves the
directional derivative. Examples of the directional derivative are pre-
sented in some detail in the next chapter, but a brief example is included
here.
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The directional derivative is a general concept involving the change
in a mathematical entity, for example, an integral, matrix, or tensor due
to a change in a variable upon which that entity depends. The notion of
a “directed” change is illustrated by inquiring about the change of the
determinant of a matrix A as A changes in the “direction” U , where U

is a matter of choice, i.e., direction. Unfortunately, in this single degree of
freedom example the directional derivative loses this generality.

The formal definition of the directional derivative of F in the direction
β, is given from Equation (1.4) as

D(F )[β] =
d

dε

∣∣∣∣
ε=0

k tan(θ + εβ)(10 cos(θ + εβ) − 6), (1.5)

giving

D(F )[β] = k

[
(10 cos(θ + εβ) − 6) sec2(θ + εβ)β

+ k (tan(θ + εβ)(−10 sin(θ + εβ))) β

]∣∣∣∣
ε=0

(1.6a)

= K(θ)β, (1.6b)

where K(θ) = k
(
(10 cos θ − 6) sec2 θ − 10 tan θ sin θ

)
. (1.6c)

Insofar as Equation (1.6b) is the change in F at some position θ due to a
change β, then K(θ) is the stiffness at position θ.

EXAMPLE 1.2

Figure 1.3 shows a weightless rigid column supported by a torsion spring
at the base. In the unloaded position the column has an initial imperfection
of θ0. The length of the column is 10, the torsional stiffness 10, and the
initial imperfection is θ0 = 0.01 rads. This example is a simple model of
the nonlinear behavior of a vertical column under the action of an axial
load.
(a) Find the rotational equilibrium equation and plot the force P against the
lateral displacement u.
(b) Linearize the equilibrium equation and set out in outline a Newton–
Raphson procedure to solve the equilibrium equation.
(c) Write a computer program to implement the Newton–Raphson solution.
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Solution

(a) The equilibrium equation is easily found by taking moments about the
base to give

k(θ − θ0) = PL sin θ. (1.7)

To plot P against u for the given values of k, L, and θ0, simply choose a
value of θ and solve for P to give

P =
k

L sin θ
(θ − θ0) ; u = L sin θ. (1.8)

This is shown in Figure 1.4. For a perfect column θ0 = 0 and for small
angles θ the equilibrium equation approximates as (k − PL)θ = 0. Since
θ �= 0, then P = k/L, which for this structure is the classical buckling load
Pcritical = 1. Observe that the exact nonlinear solution clearly shows that
in the region of Pcritical a small increase in load produces a large increase
in deflection.
(b) In order to conform with the nomenclature used in the program given
below, the internal (resisting) moment and external (applied) moment are
written as

T (θ) = k(θ − θ0) ; F = PL sin θ. (1.9)

This enables the equilibrium Equation (1.7) to be rewritten in terms of a
residual moment R(θ) suitable for the development of the Newton–Raphson
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procedure as

R(θ) = T (θ) − F = 0. (1.10)

For a given applied force P , the residual moment R(θ) is the error in the
equilibrium equation due to an incorrect choice of θ. The Newton–Raphson
procedure seeks to systematically correct this incorrect choice in order to
satisfy the equilibrium equation. To this end, Equation (1.10) is linearized
as follows:

R(θ + Δθ) ≈ R(θ) + K(θ)Δθ = 0. (1.11)

where K(θ) = DR(θ)[Δθ] is the directional derivative of R(θ) in the direc-
tion Δθ which is found as

DR(θ)[Δθ] =
d

dε

∣∣∣∣
ε=0

[k(θ + εΔθ − θ0) − PL sin(θ + εΔθ)] (1.12a)

= [kΔθ − PL cos(θ + εΔθ)Δθ]
∣∣∣∣
ε=0

(1.12b)

= (k − PL cos θ)Δθ = K(θ)Δθ. (1.12c)
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A schematic nonlinear solution can now be established using the Newton–
Raphson procedure. The force P is applied in a series of increments in order
to trace out the complete equilibrium path. The Newton–Raphson iteration
is contained within the DO WHILE loop.*

BOX 1.1: Newton-Raphson Algorithm for column problem

• INPUT L, k, θ0 , ΔP and solution parameters (tolerance)
• INITIALIZE P = 0, θ = θ0 (initial geometry), R(θ) = 0
• FIND initial K(θ)
• LOOP over load increments

• SET P = P + ΔP

• SET R = T (θ) − F

• DO WHILE (‖R(θ)‖/‖F‖ > tolerance)
• SOLVE K(θ)Δθ = −R(θ)
• UPDATE θ = θ + Δθ

• FIND T (θ) and K(θ)
• FIND R(θ) = T (θ) − F

• ENDDO
• ENDLOOP

(c) The schematic nonlinear solution procedure given above is expanded
into the FORTRAN program that follows. The nomenclature is largely self-
explanatory and follows the symbols used in Equations (1.9) to (1.12c) with
the exception that stiff=K.

Computer Program for column problem

program Newton Raphson
c NR program for eccentric simple column

implicit real*8(a-h,o-z)
open(10,file=’column.out’,status=’unknown’,form=’formatted’)

c data c
tolerance=1.0e-06
spring=10.0

* In Box 1.1 in the textbook, any remaining residual R(θ) less than the tolerance is carried over into
the next load increment.
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slength=10.0
theta0=0.01
finc=0.02
ninc=200
miter=20

c initialization
force=0.0
residual=0.0
theta=theta0
stiff=spring-force*slength*cos(theta)
write(10,’(i5,4f10.5,i5)’)0,
& theta,force,slength*sin(theta),force,0

c load loop
do incrm=1,ninc

force=force+finc
t_internal=spring*(theta-theta0)
f_external=force*slength*sin(theta)
residual=t_internal-f_external

c N-R iteration loop
niter=0
do while((abs(residual).gt.tolerance).and.(niter.lt.miter))

niter=niter+1
dtheta=-residual/stiff
theta=theta+dtheta
t_internal=spring*(theta-theta0)
f_external=force*slength*sin(theta)
residual=t_internal-f_external
stiff=spring-force*slength*cos(theta)

enddo
if(niter.ge.miter)then

print *, incrm,’ no convergence’
endif
write(10,’(i5,4f10.5,i5)’)incrm,

& theta,force,slength*sin(theta),force,niter
enddo
close (10)
stop
end



 

C H A P T E R T W O

MATHEMATICAL
PRELIMINARIES

This chapter presents worked solutions to problems involving vector and
tensor algebra, linearization, and the concept of the directional derivative
and basic tensor analysis expressions.

Equation summary

Scalar (dot) product [2.5]

u · v =

(
3∑

i=1

ui ei

)
·
(

3∑
j=1

vj ej

)

=
3∑

i,j=1

uivj (ei · ej)

=
3∑

i=1

uivi = v · u. (2.1)

Transformation of Cartesian axes [2.10, 11a]

Qij = ei · e′
j , (2.2a)

e′
j =

3∑
i=1

(e′
j · ei)ei =

3∑
i=1

Qij ei. (2.2b)

9
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Identity tensor [2.30a,b]

I =
3∑

i=1

ei ⊗ ei or I =
3∑

i,j=1

δij ei ⊗ ej . (2.3)

Tensor product components [Example 2.3]

(u ⊗ v) =

(
3∑

i=1

ui ei

)
⊗
(

3∑
j=1

vj ej

)

=
3∑

i,j=1

uivj ei ⊗ ej . (2.4)

Alternative Cartesian basis for second-order tensor [2.41]

S =
3∑

i,j=1

Sij ei ⊗ ej =
3∑

i,j=1

S′
ij e′

i ⊗ e′
j . (2.5)

Alternative tensor components [2.42]

[S]′ = [Q]T [S][Q] or S′
ij =

3∑
k,l=1

QkiSklQlj . (2.6)

Properties of the double product and trace of two tensors [2.51]

A : B = tr(AT B) = tr(BAT ) = tr(BT A) = tr(ABT ) (2.7a)

=
3∑

i, j=1

AijBij . (2.7b)

Symmetric second-order tensor in principal directions [2.59]

S =
3∑

i=1

λi ni ⊗ ni. (2.8)

Cartesian basis for third-order tensor [2.64]

A =
3∑

i,j,k=1

Aijk ei ⊗ ej ⊗ ek. (2.9)
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Directional derivative of a general nonlinear function F(x) at x0 in the
direction of u [2.101]

DF(x0)[u] =
d

dε

∣∣∣∣
ε=0

F(x0 + εu). (2.10)

Gradient of a scalar [2.128]

∇f =
∂f

∂x
. (2.11)

Gradient of a vector [2.130]

∇v =
3∑

i,j=1

∂vi

∂xj
ei ⊗ ej ; ∇v =

∂v

∂x
. (2.12)

Divergence of a vector [2.131]

div v = tr∇v = ∇v : I =
3∑

i=1

∂vi

∂xi
. (2.13)

Gauss or divergence theorem for a vector field v [2.138]∫
V

div v dV =
∫

∂V
v · n dA. (2.14)

EXAMPLE 2.1: Textbook Exercise 2.1

The second-order tensor P maps any vector u to its projection on a plane
passing through the origin and with unit normal a. Show that:

Pij = δij − aiaj ; P = I − a ⊗ a.

Show that the invariants of P are IP = IIP = 2, IIIP = 0, and find the
eigenvalues and eigenvectors of P .

Solution

Let the unit normal to the plane Π be a and uproj be the projection of the
vector u on this plane. Consequently,

uproj = u − (u · a)a, (2.15)
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which can be rewritten as

uproj = Iu − (a ⊗ a)u

= (I − a ⊗ a)u. (2.16)

By defining P := I − a ⊗ a it can be seen that the second-order tensor P

projects the vector u onto the plane Π as

Pu = (I − a ⊗ a)u

= uproj, (2.17)

which in index notation becomes

(uproj)i = Pijuj

= ui − ujajai, (2.18)

where Pij = (δij − aiaj). To consider the invariants of the second-order
tensor P , define a triad of orthonormal vectors as {a, b, c} where a is the
unit normal to the plane Π as given above. Employing Equation (2.3a,b)
the identity tensor can be written as

I = a ⊗ a + b ⊗ b + c ⊗ c, (2.19)

which enables the projection tensor P to be expressed as

P = I − a ⊗ a

= b ⊗ b + c ⊗ c. (2.20)

From the above equation P is obviously symmetric. Equation (2.8) implies
that P has unique eigenvalues and eigenvectors, and, rewriting Equa-
tion (2.20) (pedantically) as

P = 1(b ⊗ b) + 1(c ⊗ c) + 0(a ⊗ a), (2.21)

it can be seen that P will have three eigenvalues: λ1 = 1, λ2 = 1, and
λ3 = 0 together with three corresponding eigenvectors n1 = b n2 = c,
and n3 normal to b and c. The invariants can now be enumerated as

IP = tr(P ) =
3∑

i=1

λi = 2, (2.22a)

IIP = P : P =
3∑

i=1

λ2
i = 2, (2.22b)

IIIP = det(P ) = λ1λ2λ3 = 0. (2.22c)
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EXAMPLE 2.2: Textbook Exercise 2.2

Using a procedure similar to that employed in Equations (2.5) and (2.6),
obtain transformation equations for the components of third- and fourth-
order tensors in two sets of bases ei and e′

i that are related by the 3-D
transformation tensor Q with components Qij = ei · e′

j .

Solution

Define a third-order tensor G which can be expressed in terms of two
different bases ei and e′

i, where i = 1, 2, 3. Using Equation (2.9), G can be
expressed in the two bases as

G =
3∑

i,j,k=1

Gijk ei ⊗ ej ⊗ ek, (2.23a)

G =
3∑

i,j,k=1

G′
ijk e′

i ⊗ e′
j ⊗ e′

k. (2.23b)

Using Equations (2.2) the alternative bases can be related as

e′
i =

3∑
j=1

Qji ej where Qij = ei · e′
j . (2.24)

Substituting the above equation into Equation (2.23) yields

G =
3∑

i,j,k=1

G′
ijk

( 3∑
l=1

Qli el

)
⊗
( 3∑

m=1

Qmj em

)
⊗
( 3∑

n=1

Qnk en

)

=
3∑

l,m,n=1

( 3∑
i,j,k=1

G′
ijk Qli Qmj Qnk

)
el⊗em⊗en

=
3∑

l,m,n=1

Glmn el⊗em⊗en, (2.25)

where

Glmn =
3∑

i,j,k=1

G′
ijk Qli Qmj Qnk. (2.26)
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The same expressions can be straightforwardly obtained for a general
fourth-order tensor H as

H =
3∑

i,j,k,l=1

Hijkl ei ⊗ ej ⊗ ek ⊗ el, (2.27a)

H =
3∑

i,j,k,l=1

H′
ijkl e

′
i ⊗ e′

j ⊗ e′
k ⊗ e′

l, (2.27b)

where

H′
ijkl =

3∑
m,n,p,q=1

Hmnpq Qmi Qnj Qpk Qql, (2.28a)

Hijkl =
3∑

m,n,p,q=1

H′
mnpq Qim Qjn Qkp Qlq. (2.28b)

EXAMPLE 2.3: Textbook Exercise 2.3

If L and l are initial and current lengths, respectively, of an axial rod, the
associated Engineering, Logarithmic, Green, and Almansi strains given in
Section 1.3.1 are

εE(l) =
l − L

L
; εL(l) = ln

l

L
; εG(l) =

l2 − L2

2L2 ;

εA(l) =
l2 − L2

2l2
.

Find the directional derivatives DεE(l)[u], DεL(l)[u], DεG(l)[u], and
DεA(l)[u] where u is a small increment in the length l.

Solution

Using Equation (2.10) gives

DεE(l)[u] =
d

dε

∣∣∣∣
ε=0

(l + εu) − L

L
=

u

L
. (2.29a)

DεL(l)[u] =
d

dε

∣∣∣∣
ε=0

(
ln(l + εu) − ln(L)

)

=
(

u

l + εu

)∣∣∣∣
ε=0

=
u

l
. (2.29b)
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DεG(l)[u] =
d

dε

∣∣∣∣
ε=0

(l + εu)2 − L2

2L2

=
2(l + εu)u

2L2

∣∣∣∣
ε=0

=
ul

L2 =
(

l

L

)(
u

l

)(
l

L

)
. (2.29c)

Observe that this is analogous to textbook Equation (4.72) DE[u] = F T εF

where F = l/L. Finally,

DεA(l)[u] =
d

dε

∣∣∣∣
ε=0

(l + εu)2 − L2

2(l + εu)2

=
d

dε

∣∣∣∣
ε=0

(
1
2
− L2

2
(l + εu)−2

)

=
L2u

(l + εu)3

∣∣∣∣
ε=0

=
L2u

l3
=
(

L

l

)(
u

l

)(
L

l

)
. (2.30)

EXAMPLE 2.4: Textbook Exercise 2.4

Given any second-order tensor S, linearize the expression S2 = SS in the
direction of an increment U .

Solution

DS2[U ] =
d

dε

∣∣∣∣
ε=0

(S + εU)(S + εU)

=
d

dε

∣∣∣∣
ε=0

(SS + εUS + εSU + ε2UU)

= (US + SU + 2εUU)
∣∣∣∣
ε=0

= US + SU . (2.31)
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FIGURE 2.1 Example 2.5

EXAMPLE 2.5: Textbook Exercise 2.5

Consider a functional I that when applied to the function y(x) gives the
integral:

I(y(x)) =
∫ b

a
f(x, y, y′) dx,

where f is a general expression involving x, y(x) and the derivative
y′(x) = dy/dx. Show that the function y(x) that renders the above func-
tional stationary and satisfies the boundary conditions y(a) = ya and
y(b) = yb is the solution of the following Euler–Lagrange differential equa-
tion:

d

dx

(
∂f

∂y′

)
− ∂f

∂y
= 0.

Solution

The stationarity of the functional is achieved by making the directional
derivative of I(y(x)) in the direction of w(x) equal to zero. Here w(x) can
be considered as a variation of the function y(x) with w(a) = w(b) = 0,
see Figure 2.1. Hence

DI(y(x))[w(x)] =
d

dε

∣∣∣∣
ε=0

I(y(x) + εw(x)) = 0. (2.32)
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Consequently,

d

dε

∣∣∣∣
ε=0

I(y(x) + εw(x)) =
d

dε

∣∣∣∣
ε=0

[ ∫ b

a
f(x, s(x, ε), t(x, ε)dx

]
,

(2.33)

where

s(x, ε) = y(x) + εw(x), (2.34a)

t(x, ε) = y′(x) + εw′(x). (2.34b)

Hence

d

dε

∣∣∣∣
ε=0

I(y(x) + εw(x)) =
∫ b

a

∂

∂ε

∣∣∣∣
ε=0

[
f
(
x, s(x, ε), t(x, ε)

)]
dx.

(2.35)

Applying the chain rule to the term inside the integral in Equation (2.35)
gives

∂

∂ε

∣∣∣∣
ε=0

[
f
(
x, s(x, ε), t(x, ε)

)
dx

]
=
(

∂f

∂s

∂s

∂ε
+

∂f

∂t

∂t

∂ε

)∣∣∣∣
ε=0

=
∂f

∂y
w(x) +

∂f

∂y′
w′(x), (2.36)

enabling Equation (2.33) to be written as∫ b

a

∂

∂ε

∣∣∣∣
ε=0

[
f(x, s(x, ε), t(x, ε)dx

]
=
∫ b

a

[
∂f

∂y
w(x) +

∂f

∂y′
w′(x)

]
dx.

(2.37)

Integrating the second term in the right-hand side of Equation (2.37) by
parts gives∫ b

a

∂f

∂y′
w′(x)dx =

[
∂f

∂y′
w(x)

]b

a

−
∫ b

a
w(x)

d

dx

(
∂f

∂y′

)
dx. (2.38)

Since the boundary conditions w(a) = w(b) = 0, the first term above is
zero and Equation (2.37) can be rewritten as∫ b

a

∂

∂ε

∣∣∣∣
ε=0

[
f
(
x, s(x, ε), t(x, ε)

)]
dx

=
∫ b

a
w(x)

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
dx (2.39)
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Finally the stationarity condition Equation (2.32) can be expressed as

DI(y(x))[w(x)] =
∫ b

a
w(x)

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
dx = 0 (2.40)

for any function w(x); consequently,

d

dx

(
∂f

∂y′

)
− ∂f

∂y
dx = 0. (2.41)

EXAMPLE 2.6: Textbook Exercise 2.6

Prove textbook Equations (2.135a–g) following the procedure shown in
Example 2.11.

∇(fv) = f∇v + v ⊗ ∇f (2.42a)

div (fv) = fdiv v + v · ∇f (2.42b)

∇(v · w) = (∇v)T w + (∇w)T v (2.42c)

div (v ⊗ w) = v div w + (∇v)w (2.42d)

div (ST v) = S : ∇v + v · div S (2.42e)

div (fS) = f div S + S∇f (2.42f)

∇(fS) = f∇S + S ⊗ ∇f. (2.42g)

Solution

For Equation (2.42a) using Equation (2.12) express ∇(fv) in indicial
notation to give

∇(fv) =
3∑

j=1

∂

∂xj

(
f

3∑
i=1

viei

)
⊗ ej

=
3∑

i,j=1

∂

∂xj
(fvi)ei ⊗ ej

=
3∑

i,j=1

f
∂vi

∂xj
ei ⊗ ej +

3∑
i,j=1

∂f

∂xj
vi ei ⊗ ej

= f
3∑

i,j=1

∂vi

∂xj
ei ⊗ ej +

3∑
i=1

vi ei ⊗
3∑

j=1

∂f

∂xj
ej

= f∇v + v ⊗ ∇f. (2.43)
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For Equation (2.42b) using Equation (2.13) gives

div (fv) =
3∑

i=1

∂

∂xi
(fvi)

=
3∑

i=1

f
∂vi

∂xi
+

3∑
i=1

vi
∂f

∂xi

= f
3∑

i=1

∂vi

∂xi
+

3∑
i=1

vi
∂f

∂xi

= fdiv v + v · ∇f. (2.44)

For Equation (2.42c) using Equations (2.1) and (2.11) gives

∇(v · w) =
3∑

i=1

∂

∂xi

( 3∑
j=1

vjwj

)
ei

=
3∑

i,j=1

(
∂vj

∂xi
wjei + vj

∂wj

∂xi
ei

)

=
3∑

j=1

( 3∑
i=1

∂vj

∂xi
ei

)
wj +

3∑
j=1

( 3∑
i=1

∂wj

∂xi
ei

)
vj

= (∇v)T w + (∇w)T v. (2.45)

For Equation (2.42d) using textbook Example 2.4 and Equation (2.13)
yields

div (v ⊗ w) = div

( 3∑
i=1

viei ⊗
3∑

j=1

wjej

)

=
3∑

i,j=1

∂

∂xj
(viwj)ei

=
3∑

i,j=1

vi
∂wj

∂xj
ei +

3∑
i,j=1

∂vi

∂xj
wjei

= v div w + (∇v)w. (2.46)
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For Equation (2.42e) see textbook Example 2.11. However, an expanded
version is given below:

div (ST v) = div

(( 3∑
i,j=1

Sji ei ⊗ ej

) 3∑
k=1

vkek

)

= div

( 3∑
i,j,k=1

Sji vk(ej · ek)ei

)

= div

( 3∑
i,j,k=1

Sji vk δjkei

)

=
3∑

i,j=1

∂

∂xi

(
Sji vj

)

=
3∑

i,j=1

Sji
∂vj

∂xi
+

3∑
i,j=1

vj
∂Sji

∂xi

= S : ∇v + v · div (S). (2.47)

For Equation (2.42f),

div (fS) = div

(
f

3∑
i,j=1

Sij ei ⊗ ej

)

=
3∑

i,j=1

div (fSij ei ⊗ ej)

=
3∑

i,j=1

∂

∂xj
(fSij ei)

=
3∑

i,j=1

∂

∂xj
(fSij)ei

=
3∑

i,j=1

(
f

∂Sij

∂xj
ei +

∂f

∂xj
Sij ei

)

= f
3∑

i,j=1

∂Sij

∂xj
ei +

3∑
i,j=1

Sij ei
∂f

∂xj

= fdiv (S) + S ∇f. (2.48)
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For Equation (2.42g),

∇(fS) =
3∑

k=1

∂

∂xk
(fS) ⊗ ek

=
3∑

i,j,k=1

∂

∂xk
(fSij)ei ⊗ ej ⊗ ek

=
3∑

i,j,k=1

f
∂Sij

∂xk
ei ⊗ ej ⊗ ek

+
3∑

i,j=1

Sijei ⊗ ej ⊗
3∑

k=1

∂f

∂xk
ek

= f∇S + S ⊗ ∇f. (2.49)

EXAMPLE 2.7: Textbook Exercise 2.7

Show that the volume of a closed 3-D body V is variously given as

V =
∫

∂V
x nx dA =

∫
∂V

y ny dA =
∫

∂V
z nz dA,

where nx, ny , and nz are the x, y, and z components of the unit normal n.

Solution

The volume of an enclosed body V with boundary ∂V can be obtained as
follows:

V =
∫

V
dV. (2.50)

Recall the Gauss or divergence theorem for a vector field w given by
Equation (2.14) as

∫
V

div w dV =
∫

∂V
w · n dA where n =

⎡
⎣nx

ny

nz

⎤
⎦ , (2.51)
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where the vector n is normal to the surface ∂V of the volume V . Now recall
Equation (2.13) for the definition of div w:

div w =
3∑

i=1

∂wi

∂xi
. (2.52)

Let the vector w = [x, 0, 0]T; consequently,∫
V

div w dV =
∫

V
dV = V. (2.53)

But ∫
V

div w dV =
∫

∂V
w · n dA =

∫
∂V

xnx dA, (2.54)

hence

V =
∫

∂V
xnx dA. (2.55)

By choosing w = [0, y, 0]T or w = [0, 0, z]T , the remaining equations can
likewise be proved.

EXAMPLE 2.8

A scalar field Φ(x) = x2
1 + 3x2x3 describes some physical quantity (i.e.,

total potential energy). Show that the directional derivative of Φ in the
direction u = 1√

3
(1, 1, 1)T at the position x = (2,−1, 0)T is 1√

3
.

Solution

Using Equation (2.10) gives

DΦ(x)[u]

=
d

dε

∣∣∣∣
ε=0

[
(x1 + εu1)2 + 3(x2 + εu2)(x3 + εu3)

]
(2.56a)

=
(
2(x1 + εu1)u1 + 3(x2 + εu2)u3 + 3(x3 + εu3)u2

)∣∣∣∣
ε=0

(2.56b)

= 2x1u1 + 3x2u3 + 3x3u2. (2.56c)

Substituting the given values for x and u yields DΦ(x)[u] = 1√
3
.
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EXAMPLE 2.9

Given the second-order tensor A, obtain the directional derivative of the
expression A3 = AAA in the direction of an arbitrary increment U

of A.

Solution

Applying the product rule for the directional derivative gives

D(A3)[U ] = DA[U ]A2 + ADA[U ]A + A2DA[U ], (2.57)

where

DA[U ] =
d

dε

∣∣∣∣
ε=0

(A + εU) (2.58a)

= U , (2.58b)

giving

D(A3)[U ] = UA2 + AUA + A2U . (2.59)

EXAMPLE 2.10

Given S−1S = I and DI[U ] = 0, where S is a second-order tensor, show
that D

(
S−1)[U ] = −S−1US−1.

Solution

D
(
S−1S

)
[U ] = DS−1[U ]S + S−1DS[U ] (2.60a)

= 0, (2.60b)

D
(
S−1)[U ] = −S−1US−1. (2.60c)

EXAMPLE 2.11

If the second-order tensors S = ST and W T = −W , show that S : W =
0 (i.e., tr(SW ) = 0).
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a
pA,0 0

pp V
extF

b

,L A

a
pA, pp V

extF

b

,l a

Initial configuration 

Deformed configuration 

FIGURE 2.2 Truss – piston system

Solution

Recalling the relation between the double product and the trace given by
Equation (2.7a,b)

S : W = tr(ST W ) (2.61a)

= tr(SW ) (2.61b)

= tr(SW T ) (2.61c)

= −tr(SW ). (2.61d)

For Equation (2.61b) to be equal to Equation (2.61d), tr(SW ) = 0.

EXAMPLE 2.12

This provides an interesting example of the use of the directional derivative
to find an equilibrium equation and the corresponding tangent stiffness
term. Some material from textbook Chapter 3 is referred to in this example;
however, the example is introduced here mainly to illustrate the use of
the directional derivative. This simple model is analogous to the structural
problem of a high altitude pumpkin balloon in which the axial rod represents
the fabric and cabling enclosing a constant mass of gas. As the balloon
rises, the external force provided by the atmospheric pressure decreases
and the balloon expands. Figure 2.2 represents two configurations of a one-
dimensional structural system comprised of a truss member joining nodes
a and b of initial length L and cross-sectional area A connected to a piston
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chamber of constant section Ap filled with a gas. An external force Fext

is applied at node b. The constant mass of gas enclosed in the piston is
considered to satisfy the Boyle’s law which states that

p Vp = p0 V 0
p = K; K is a constant

where p and Vp denote the pressure and the volume of the gas within the
chamber in the deformed configuration, respectively. This example employs
the strain energy per unit initial volume given in textbook Equation (3.17) as
ψ = E(lnλ)2/2 where E is a Young’s modulus type constitutive term and
λ is the stretch of the axial rod. Consequently, the total energy functional
for the overall system can be written as a function of the spatial position
of point b denoted by the deformed length l and the initial volume AL as
follows:

Π(l) = Πtruss(l) + Πpiston(l) − Πext

=
1
2
EAL (lnλ)2 −

∫
Vp

p(V )dV − Fextl. (2.62)

in which λ = l
L is the stretch ratio of the truss member.

(a) Obtain the stationary point of the above energy functional and derive
the principal of virtual work.
(b) Obtain the equilibrium equation at node b and show that it is indeed a
nonlinear equation.
(c) Obtain the tangent stiffness matrix required for a Newton–Raphson
algorithm after suitable linearization.
(d) Explain whether the inclusion of the piston chamber increases or
decreases the stiffness of the truss member.

Solution

(a) From Equation (2.62) the derivative of Πtruss(l) in the direction δl

(which could be real or virtual) to be found as1

DΠtruss(l)[δl] = EAL ln
(

l

L

)
D

(
ln
(

l

L

))
[δl]

= EAL ln
(

l

L

)
L

l
D

(
l

L

)
[δl]

1 Based on the experience of previous examples given in this chapter, the explicit introduction of the
derivative with respect to ε in the directional derivative is omitted.
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= EAL ln
(

l

L

)(
L

l

)
1
L

δl

=
EAL

l
ln
(

l

L

)
δl. (2.63)

Before finding the directional derivative of the piston component of the total
energy, it is necessary to find the deformed volume of the gas as a function
of the deformed length l as

Vp(l) = V 0
p − Ap(l − L). (2.64)

From Equation (2.62) the gas pressure as a function of l is

p(l) =
p0V 0

p

V 0
p − Ap(l − L)

. (2.65)

The directional derivative of the piston component of the total energy with
respect to δl can now be found as

DΠpiston(l)[δl] =
∂Πpiston

∂Vp
DVp(l)[δl]

= −p(l)DVp(l)[δl]. (2.66)

where from Equation (2.64)

DVp(l)[δl] = −Apδl. (2.67)

Finally, the derivative of the external total energy component F extl is simply

DΠext(l)[δl] = F extδl. (2.68)

Assembling the complete directional derivative from Equations (2.63, 2.65,
2.66, 2.68) and noting the negative terms in Equation (2.62) yields the
stationary condition as

DΠ(l)[δl] =

(
EA

L

l
ln

l

L
+

App
0V 0

p

V 0
p − Ap(l − L)

− F ext

)
δl = 0.

(2.69)

The three terms inside the parentheses in the above equation are all forces
acting at point b. Consequently, treating δl now as a virtual change in length
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of the rod, Equation (2.69) can be identified as the virtual work expression
of equilibrium as

δW (l, δl) =
(
T truss(l) + T piston − F ext) δl = 0. (2.70)

(b) In Equation (2.70) δl although virtual is not zero, hence the equilibrium
equation can be established as

R(l) = T truss(l) + T piston(l) − F ext = 0. (2.71)

(c) The tangent stiffness term used in a Newton–Raphson procedure is
found by linearizing the equilibrium equation. This is achieved by finding
the directional derivative of Equation (2.71) in the direction of a real change
u in l to give

DR(l)[u] = DT truss(l)[u] + DT piston[u] − DF ext[u] = 0, (2.72)

where

DT truss(l)[u] = −EAL

l2
ln

l

L
D(l)[u] +

EAL

l

(
L

l

)
D

(
l

L

)
[u]

=
(
−EAL

l2
ln

l

L
+

EAL

l2

)
u

=
EAL

l2

(
1 − ln

l

L

)
u (2.73)

DT piston(l)[u] =
−Ap p0V 0

p

(V 0 − Ap(l − L))2 D
(
V 0 − Ap(l − L)

)
[u]

=

(
A2

p p0V 0
p

(V 0 − Ap(l − L))2

)
u. (2.74)

Consequently from Equations (2.73, 2.74) the tangent stiffness is

K =
EAL

l2

(
1 − ln

l

L

)
+

A2
p p0V 0

p

(V 0 − Ap(l − L))2 . (2.75)

(d) From the final term in the above equation it can be seen that the stiffness
of the truss is increased by the presence of the piston chamber.
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ANALYSIS OF
THREE-DIMENSIONAL
TRUSS STRUCTURES

The two- and three-dimensional truss examples presented in this chapter
demonstrate the complex and often unexpected load deflection behavior
exhibited when, in particular, geometrical nonlinearity is included in struc-
tural analysis. Each point on the various graphs shown below represents
an equilibrium configuration; however, these configurations may be struc-
turally stable or unstable. For a chosen load it can be observed that the
structure can be in a variety of equilibrium configurations. For most struc-
tures subjected to “in service” loadings, this is clearly unacceptable (not
to say alarming), nevertheless such analysis can indicate possible collapse
scenarios. While the points on a load deflection graph refer to equilibrium
configurations, it must not be assumed that connecting adjacent points nec-
essarily represents smooth continuity of the motion of the structure as the
loading changes. However, such smooth motion is likely to be the case if a
large number of load increments are employed in the solution, but it cannot
be guaranteed.

A situation where a small change in load leads to a dramatic change in
configuration is known as “snap-through” behavior. There are “structures”
that rely on snap-through behavior to fulfill a useful function. Indeed such
structures are vastly more numerous than everyday structures; for example,
a shampoo container cap when opened carefully will suddenly “flick” into
a fully opened position. A child’s hair clip often employs snap-through
behavior to lock into position, while perhaps the most common item is

28
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the simple light switch. Unfortunately, shallow dome structures can exhibit
snap-through characteristics with disastrous consequences.

Unlike linear analysis, controlling nonlinear finite element solutions
requires experience. New users to the FLagSHyP program (available free
at www.flagshyp.com) can often be frustrated when the solution fails, pro-
duces unexpected results, or produces results distant from the region of
interest. Satisfactory results can only be obtained by careful adjustment
of the control parameters which comprise the final line of data. These are
given below and are fully discussed in the second edition of the textbook,
Nonlinear Continuum Mechanics for Finite Element Analysis.

Users are advised to change the control data to see the effect and gain
experience (as have many students of this subject!).

nincr,xlmax,dlamb, 1 Solution control parameters:
miter,cnorm,searc, nincr: number of load/
arcln,incout,itarget displacement increments
nwant, iwant xlmax: maximum value of load-

scaling parameter
dlamb: load parameter increment
miter: maximum allowed

number of iterations
per increment

cnorm: convergence tolerance
searc: line-search parameter

(if 0.0 not in use)
arcln: arc-length parameter

(if 0.0 not in use)
incout: output counter

(e.g., for every 5th
increment, incout=5)

itarget: target iterations per increment
(see note below)∗

nwant: single output node
(0 if not used)

iwant: output degree of freedom at
nwant (0 if not used)
(see note 5)∗

∗ See user instructions in Section 10.2 of the main text.
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Area A

dF

t = 1 

FIGURE 3.1 Arch

EXAMPLE 3.1: Textbook Exercise 3.1

Run the simple single degree of freedom example given in Section 3.6.1,
Figure 3.8. A high value of the yield stress will ensure that the truss remains
elastic.

Solution

one truss element
truss2
2
1 7 0.0 0.0 0.0
2 5 100.0 100.0 0.0
1
1 1 1 2
1
1 2
0.0 210000.0 0.3 1.0 1.0e+10 1.0
1 0 0 0.0 0.0 0.0
2 0.0 -1.0 0.0
500 40000.0 0.01 10 1.0E-6 0.0 -0.50 5 5 2 2

EXAMPLE 3.2: Textbook Exercise 3.2

Analyze the arch shown in text Figure 3.10 (Figure 3.1 above). The radius
is 100, the height is 40 and the half span is 80. The cross-sectional area is
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−81 −80 −79 −78 −77 −76 −75

59

60

61

62

63

64

X1

X
2

Deformed shapes

FIGURE 3.2 Arch: left support

1 × 1. Young’s modulus is 107 and Poisson’s ratio is ν = 0.3. The figure
shows how the arch can be represented as a truss where, by ignoring the
cross members, the second moment of area of the arch, I = 1/12, can be
approximated by the top and bottom truss members, where I = 2(A(t/2)2).
Plot the central load vertical deflection curve. Slight imperfections in the
symmetry of the geometry may caused unsymmetric deformations, other-
wise these can be initiated by a very small horizontal load being placed
with the vertical load.

Solution

The area of the top and bottom chords of the truss is calculated as a = 1/6
and the area of the interconnecting members is chosen as a = 1/12. Top and
bottom chords have material number 1 and all others material number 2.
Figure 3.2 shows the truss configuration in the x–y plane with the pin
support (boundary code 7) being on the lower end node. Intermediate nodes
are all restrained in the out of plane z direction using boundary code 4. Only
partial coordinate and element data is shown below as there are 402 nodes
and 1001 elements. A variable arc length is employed.
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Note that, unlike linear analysis, nonlinear computations require expe-
rience in order to choose nominal load magnitudes and a set of control
parameters that ensure convergence over the range of interest.

Circular truss arch elastic symmetric load
truss2
402

1 7 -79.6 59.7 0.0
2 4 -80.4 60.3 0.0
3 4 -79.043 60.4355 0.0
4 4 -79.8374 61.0429 0.0
5 4 -78.4792 61.1659 0.0
6 4 -79.2679 61.7806 0.0
.
.
.

397 4 78.4792 61.1659 0.0
398 4 79.2679 61.7806 0.0
399 4 79.043 60.4355 0.0
400 4 79.8374 61.0429 0.0
401 7 79.6 59.7 0.0
402 4 80.4 60.3 0.0

1001
1 2 1 2
2 1 2 4
3 1 1 3
4 2 1 4
5 2 2 3
6 2 3 4
7 1 4 6
8 1 3 5
9 2 3 6

10 2 4 5
.
.
.

990 2 396 397
991 2 397 398
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992 1 398 400
993 1 397 399
994 2 397 400
995 2 398 399
996 2 399 400
997 1 400 402
998 1 399 401
999 2 399 402
1000 2 400 401
1001 2 401 402

2
1 2
0.0 10000000.0 0.3 0.166666667 250000000.0 1.0
2 2
0.0 10000000.0 0.3 0.083333333 250000000.0 1.0
1 0 0 0.0 0.0 0.0
202 0.0 -10.0 0.0
250 25000.0 0.1 100 1.0E-6 0.0 1.0 1 5 202 2

Figure 3.3 shows the load deflection (not position) behavior at the
central top node, where negative loads (i.e., downward) are shown positive
and points are joined with straight lines. Observe that all points on the
curves in Figure 3.3 represent positions of equilibrium, some stable, many
unstable. When running the example the appearance of solver warnings in
an otherwise successful computation usually indicates regions of unstable
equilibrium.

The convoluted equilibrium paths are similar to those achieved in the
paper by H. B. Harrison entitled Post-buckling behavior of elastic circu-
lar arches in the Proc. Instn. Civ. Engrs, Part 2, 1978, 65, June, 283–
98. Figure 3.4 shows equilibrium configurations at increments 23 and
40 corresponding to loads of 1259.6 (downward, negative on output) and
2930.1 (upward, positive on output).

Figure 3.3 clearly shows that at a given load there is the possibility of
a number of equilibrium configurations. This is demonstrated in Figure 3.5
where some unexpected configurations occur at about a downward load of
5000. To initiate an unsymmetric deformation, the load and controls data
lines are changed to
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FIGURE 3.3 Arch: symmetric load deflection behavior
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FIGURE 3.4 Arch: symmetric equilibrium configurations 1
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FIGURE 3.5 Arch: symmetric equilibrium configurations 2

202 0.01 -10.0 0.0
250 25000.0 0.1 100 1.0E-6 0.0 1.0 1 5 202 2

which results in the emergence of a bifurcation in the equilibrium path at
a load of about 1000, as shown in Figure 3.6. Note that the solution failed
to converge after increment 212, which can probably be overcome using a
fixed arc length.

Various unsymmetric configurations are shown in Figure 3.7.

EXAMPLE 3.3: Textbook Exercise 3.3

Analyze the shallow trussed dome shown in textbook Figure 3.11. The outer
radius is 50 and height 0, the inner radius is 25 and height 6.216, and the
apex height is 8.216. The cross-sectional area of each truss member is unity.
Textbook Figure 3.11 is approximate in that the apparent major triangles
spanning the outer circle do not have straight sides as shown. Young’s
modulus is 8 × 107 and Poisson’s ratio is 0.5, indicating incompressible
behavior. Figure 3.8 shows the initial shape.
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Circular arch unsymmetric load

FIGURE 3.6 Arch: unsymmetric load deflection behavior
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FIGURE 3.7 Arch: unsymmetric equilibrium configurations
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FIGURE 3.8 Shallow dome: initial shape

Solution

3D shallow dome example
truss2
13

1 7 0.0 50.0 0.0
2 7 -43.3013 25.0 0.0
3 7 -43.3013 -25.0 0.0
4 7 0.0 -50.0 0.0
5 7 43.3013 -25.0 0.0
6 7 43.3013 25.0 0.0
7 0 -12.5 21.6506 6.216
8 0 -25.0 0.0 6.216
9 0 -12.5 -21.6506 6.216
10 0 12.5 -21.6506 6.216
11 0 25.00 0.0 6.216
12 0 12.5 21.6506 6.216
13 0 0.0 0.0 8.216

24
1 1 1 12
2 1 1 7
3 1 2 7
4 1 2 8
5 1 3 8
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6 1 3 9
7 1 4 9
8 1 4 10
9 1 5 10
10 1 5 11
11 1 6 11
12 1 6 12
13 1 7 12
14 1 7 8
15 1 8 9
16 1 9 10
17 1 10 11
18 1 11 12
19 1 12 13
20 1 7 13
21 1 8 13
22 1 9 13
23 1 10 13
24 1 11 13

1
1 2
0.0 80.0E+06 0.5 1.0 10.0E+06 1.0
1 0 0 0.0 0.0 0.0
13 0.0 0.0 -100.0
200 1.0E+06 1.0 20 1.0E-06 0.0 -1.0 5 5 13 3

Plot the vertical downward load deflection behavior at the apex. A fixed
arc length was used to achieve the equilibrium points shown on Figure 3.9
(not all 200 increments shown). This is a good example of snap-through
behavior. The equilibrium path is very convoluted, but upon examination
the corresponding dome shapes are perfectly reasonable.

EXAMPLE 3.4: Textbook Exercise 3.4

Run the trussed frame example given in textbook Figure 3.9, initially as
shown and then with clamped supports. The cross-sectional area is 6, giving
a truss member area of 1. Typical equilibrium configurations are given in
Figure 3.10 and Figure 3.11 shows the load deflection (equilibrium path).
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FIGURE 3.9 Shallow dome: load deflection behavior at the apex
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FIGURE 3.10 Clamped Lee’s frame: equilibrium configurations

Solution

Clamped Lee’s frame with truss elements elastic case
truss2
240
1 7 0.0 0.0 0.0
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FIGURE 3.11 Clamped Lee’s frame: load deflection behavior

2 7 2.0 0.0 0.0
3 4 0.0 2.0 0.0
4 4 2.0 2.0 0.0
5 4 0.0 4.0 0.0
6 4 2.0 4.0 0.0
7 4 0.0 6.0 0.0
8 4 2.0 6.0 0.0
.
.
.
233 4 114.0 118.0 0.0
234 4 114.0 120.0 0.0

235 4 116.0 118.0 0.0
236 4 116.0 120.0 0.0
237 4 118.0 118.0 0.0
238 4 118.0 120.0 0.0
239 7 120.0 118.0 0.0
240 7 120.0 120.0 0.0
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596
1 1 1 2
2 1 1 3
3 1 2 4
4 1 1 4
5 1 2 3
.
.
.
590 1 236 237
591 1 237 238
592 1 237 239
593 1 238 240
594 1 237 240
595 1 238 239
596 1 239 240
1
1 2
0.0 210000.0 0.3 1.0 10.0E+06 1.0
1 0 0 0.0 0.0 0.0
144 0.0 -100.0 0.0
500 25000.0 0.1 100 1.0E-6 0.0 -10.0 5 5 144 2

EXAMPLE 3.5

This example, devised by Crisfield,1 demonstrates snap-back behavior. The
layout is shown in Figure 3.12 where elements 1, 2, and 4 support an
effectively rigid element 3. In the original example, elements 1, 2, and 4
were linear springs; consequently the lengths and material properties of
these elements are chosen to model linear springs in which the initial stress
term is negligible.

1 Crisfield, M. A., Non-linear Finite Element Analysis of Solids and Structures, Volume 1, Wiley, 1991,
p. 100.
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FIGURE 3.12 Crisfield’s snap-back problem – configuration

The length of elements 1, 2, and 4 is 107 and sloping element 3 is
approximately 2500. Other material properties are such that(

EA

L

)
1

= 1.00;
(

EA

L

)
2

= 0.25;
(

EA

L

)
4

= 1.50 (3.1)

A high value, 1.0e10, is chosen for the yield stress to ensure elasticity.

Solution

Crisfield’s snap-back problem
truss2
5
1 6 -10000000.0 0.0 0.0
2 6 0.0 0.0 0.0
3 7 10000000.0 0.0 0.0
4 3 2500.0 0.0 25.0
5 7 2500.0 0.0 10000025.0
4
1 1 1 2
2 2 2 3
3 3 2 4
4 4 4 5
4
1 2
0.0 10000000.0 0.0 1.00 1.0e+10 1.0
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FIGURE 3.13 Snap-back problem – horizontal load deflection for node 1

2 2
0.0 10000000.0 0.0 0.25 1.0e+10 1.0
3 2
0.0 50000000.0 0.0 1.0 1.0e+10 1.0
4 2
0.0 10000000.0 0.0 1.5 1.0e+10 1.0
1 0 0 0.0 0.0 0.0
1 100.0 0.0 0.0
1000 100.0 1.0 20 1.0e-06 0.0 1.0 1 3 1 1

Figure 3.13 shows the snap-back behavior where the central portion of the
equilibrium path shows both a reduction in load and displacement.



 

C H A P T E R F O U R

KINEMATICS

This chapter provides examples involving various aspects of finite defor-
mation kinematics. The examples are presented in a pedagogical order and
include additional examples not in the textbook.

Equation summary

Notation for transpose of the inverse of a square matrix A

A−T = (A−1)T = (AT)−1. (4.1)

Third invariant of a second-order tensor [2.54]

IIIS = det S = det[S]. (4.2)

Push forward of elemental material vector [4.10,12]

dx = F dX. (4.3)

Green’s strain tensor [4.18b]

E =
1
2
(C − I) ; C = F TF . (4.4)

Rotation tensor [4.27]

R = FU−1. (4.5)

44
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Right Cauchy–Green tensor [4.30]

C =
3∑

α=1

λ2
α Nα ⊗ Nα. (4.6)

Material stretch tensor [4.31]

U =
3∑

α=1

λα Nα ⊗ Nα. (4.7)

Push forward of elemental material vector in terms of spatial stretch tensor
and rotation tensor [4.34]

dx = F dX = V (RdX). (4.8)

Stretch [4.42]

λ1 =
dl1
dL1

. (4.9)

Alternative relation between spatial and material vector triads [4.44a]

FNα = λαnα. (4.10)

Relation between spatial and material vector triads [4.44b]

F−TNα =
1
λα

nα. (4.11)

Elemental volume ratio [4.57]

dv = JdV ; J = det F . (4.12)

Distortional component of the right Cauchy–Green tensor [4.65]

Ĉ = (det C)−1/3C. (4.13)

Push forward of elemental material area vector [4.68]

da = JF−TdA. (4.14)

Linearized deformation gradient [4.69]

DF (φt)[u] = (∇u)F . (4.15)

Linearized Green’s strain [4.72]

DE[u] = φ−1
∗ [ε] = F TεF . (4.16)
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Linearized right Cauchy–Green tensor [4.74a]

DC[u] = 2F T εF . (4.17)

Linearized volume change [4.77]

DJ [u] = J trε. (4.18)

Velocity of a particle [4.80]

v(X, t) =
∂φ(X, t)

∂t
. (4.19)

Velocity gradient tensor [4.93]

l = Ḟ F−1. (4.20)

Material strain rate tensor [4.97]

Ė = 1
2 Ċ = 1

2 (Ḟ
T
F + F TḞ ). (4.21)

Rate of deformation tensor [4.100a]

d = F−T ĖF−1. (4.22)

Rate of deformation tensor [4.101]

d = 1
2 (l + lT ). (4.23)

EXAMPLE 4.1: Textbook Exercise 4.1

(a) For the uniaxial strain case find the Engineering, Green’s, and Almansi
strain in terms of the stretch λ1.
(b) Using these expressions, show that when the Engineering strain is small,
all three strain measures converge to the same value.

Solution

The uniaxial stretch is simply defined by Equation (4.9) as

λ1 = dl1/dL1 (4.24)

from which the various uniaxial strain measures given in Chapter 1 are:



 

K I N E M A T I C S 47

Engineering strain:

εE =
dl − dL

dL
= λ1 − 1; (4.25)

Lagrangian or Green strain:

εG =
1
2

(
dl2 − dL2

dL2

)
=

1
2
(λ2

1 − 1); (4.26)

Almansi strain:

εA =
1
2

(
dl2 − dL2

dl2

)
=

1
2

(
1 − 1

λ2
1

)
. (4.27)

From Equation (4.25), the stretch λ1 can be expressed in terms of the
Engineering strain as

λ1 = 1 + εE, (4.28)

enabling Green and Almansi strains to be rewritten as

εG =
1
2
(λ2

1 − 1) = εE +
1
2
ε2
E, (4.29a)

εA =
1
2

(
1 − 1

λ2
1

)
=

1
2

(
ε2
E + 2εE

ε2
E + 2εE + 1

)
. (4.29b)

For small Engineering strain, higher-order terms can be neglected, yielding

εG = εE +
1
2
ε2
E ≈ εE, (4.30a)

εA =
1
2

(
ε2
E + 2εE

ε2
E + 2εE + 1

)
≈ εE

1
= εE. (4.30b)

EXAMPLE 4.2

A continuum body, see Figure 4.1, undergoes a rigid body rotation θ about
the origin defined by

x = RX ; R =

[
cos θ − sin θ

sin θ cos θ

]
(4.31)

where R is a rotation matrix. In other words, material point P (X1, X2)
rotates to spatial point p(x1, x2).
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2 2,X x

FIGURE 4.1 Rigid body rotation

(a) Demonstrate why the engineering or small strain tensor ε is not a valid
measure of strain when the rotation θ is large.
(b) Demonstrate that Green’s strain E is a valid measure of strain for the
above motion regardless of the magnitude of θ.

Solution

(a) From Equation (4.31) the spatial coordinates of p are

x1 = (cos θ)X1 − (sin θ)X2, (4.32a)

x2 = (sin θ)X1 + (cos θ)X2. (4.32b)

The displacements u(X) and v(X) are

u(X1, X2) = −(X1 − x1) = (cos θ − 1)X1 − (sin θ)X2, (4.33a)

v(X1, X2) = x2 − X2 = (sin θ)X1 + (cos θ − 1)X2. (4.33b)

The relevant components of the engineering strain tensor ε are

εxx =
∂ux

∂x
; (4.34a)

εyy =
∂uy

∂y
; (4.34b)

εxy =
1
2

(
∂ux

∂y
+

∂uy

∂x

)
. (4.34c)
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From Equation (4.33) it is easily shown that the Engineering strain is not
zero for the rigid body rotation; thus from Equation (4.31)

x = RX = X + u, (4.35)

giving

u = x − RTx

= (I − RT)x

=

[
1 − cos θ − sin θ

sin θ 1 − cos θ

]
x, (4.36)

hence

εxx = εyy = (1 − cos θ) ; εxy = 0. (4.37)

(b) For the rigid body case being considered, the deformation gradient
tensor is identical to the rotation tensor, i.e., F = R consequently from
Equation (4.4) and noting that RT = R−1

E =
1
2
(RTR − I) = 0. (4.38)

Hence all components of Green’s strain conform to zero strain as required
of rigid body motion, as indeed does the Eulerian or Almansi strain tensor
given by

e =
1
2
(I − b−1) ; b = FF T. (4.39)

EXAMPLE 4.3

A single 4-node isoparametric element can be used to illustrate the material
and spatial coordinates used in finite deformation analysis.1 The nondimen-
sional coordinates ξ and η can be replaced by the material coordinates X1

and X2, giving the resulting single square element with initial dimensions
2 × 2 and centered at X1 = X2 = 0, see Figure 4.2. The shape functions
are employed to define the spatial coordinates x = (x1, x2)T in terms of
the material coordinates X = (X1, X2)T and xa = (x1, x2)T

a where xa

1 This example can be illustrated and calculated using the MATLAB program “polar decomposition.m”
which can be downloaded from the website www.flagshyp.com. This program can be used to explore
the deformation using user-chosen spatial coordinates.
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FIGURE 4.2 Polar decomposition

contains the spatial coordinates of nodes a = 1, 4 in the deformed configu-
ration. Consequently the mapping x = φ(X) is

x = φ(X) = N1x1 + N2x2 + N3x3 + N4x4, (4.40)

where

N1 =
1
4
(1 − X1)(1 − X2) ; N2 =

1
4
(1 + X1)(1 − X2) (4.41a)

N3 =
1
4
(1 + X1)(1 + X2) ; N4 =

1
4
(1 − X1)(1 + X2). (4.41b)

(a) For X = (0, 0)T and x1 = (4, 2)T , x2 = (8, 4)T , x3 = (6, 8)T , x4 =
(4, 6)T find the deformation gradient F and Green’s strain E. (b) Find the
principal stretches λ1 and λ2 and the corresponding principal material and
spatial unit vectors N 1, N 2, and n1, n2 respectively. (c) Using the above
calculations show that Green’s strain tensor can be expressed in terms of
the principal material directions as

E =
1
2
[
(λ2

1 − 1)N 1 ⊗ N 1 + (λ2
2 − 1)N 2 ⊗ N 2

]
. (4.42)
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Solution

Substituting the nodal spatial coordinates into Equation (4.40) and differ-
entiating with respect to the material coordinates gives

∂x1

∂X1
= −1

4
(1 − X2)4 +

1
4
(1 − X2)8 +

1
4
(1 + X2)6 − 1

4
(1 + X2)4,

(4.43a)

∂x2

∂X1
= −1

4
(1 − X2)2 +

1
4
(1 − X2)4 +

1
4
(1 + X2)8 − 1

4
(1 + X2)6,

(4.43b)

∂x1

∂X2
= −1

4
(1 − X1)4 − 1

4
(1 − X1)8 +

1
4
(1 + X1)6 +

1
4
(1 − X1)4,

(4.43c)

∂x2

∂X2
= −1

4
(1 − X1)2 − 1

4
(1 − X1)4 +

1
4
(1 + X1)8 +

1
4
(1 − X1)6.

(4.43d)

Substituting the material coordinates X = (0, 0)T gives

F =

[
∂x1/∂X1 ∂x1/∂X2

∂x2/∂X1 ∂x2/∂X2.

]
=

[
1.5 −0.5

1.0 2.0

]
. (4.44)

Green’s strain tensor E is easily found from Equation (4.4) as

E =
1
2
(F TF − I) =

[
1.125 0.625

0.625 1.625

]
. (4.45)

From Equation (4.6) the stretches λ1 and λ2 are the square root of the
eigenvalues of C and the principal material vectors N 1 and N 2 are the
corresponding normalized eigenvectors, yielding λ1 = 1.5504 and λ2 =
2.2575 and

N 1 =

[−0.8281

0.5606

]
; N 2 =

[
0.5606

0.8281

]
. (4.46)
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The rotation tensor is given by Equation (4.5) as R = FU−1 where U is
given by Equation (4.7), hence

U = 1.5504

[−0.8281

0.5606

]
[−0.8281, 0.5606]

+ 2.2575

[
0.5606

0.8281

]
[0.5606, 0.8281] (4.47a)

=

[
1.7726 0.3283

0.3283 2.0352

]
. (4.47b)

Hence

R =

[
0.9191 −0.3939

0.3939 0.9191

]
. (4.48)

The spatial unit vectors are given by nα = RNα , α = 1, 2 as

n1 =

[−0.9820

0.1891

]
; n2 =

[
0.1891

0.9820

]
. (4.49)

Figure 4.2 shows the principal unit vectors before and the corresponding
rotated and stretch vectors after deformation for the material point X =
(0, 0)T . The deformation information for other material points can readily
be explored using the program “polar decomposition.m.”
Using a similar calculation to that given in Equation (4.47) together with
Equations (4.4), (4.6) it is easy to demonstrate that Green’s strain E can be
expressed in principal directions as given by Equation (4.42).

EXAMPLE 4.4

The finite deformation of a two-dimensional continuum from initial position
X = (X1, X2)T to a final configuration x = (x1, x2)T is given as

x1 = 4 − 2X1 − X2 ; x2 = 2 +
3
2
X1 − 1

2
X2. (4.50)

(a) Calculate the deformation gradient tensor F , the right Cauchy–Green
strain tensor C and the left Cauchy–Green strain tensor b.
(b) Calculate the stretch undergone by a unit material vector a0 = (3

5 , 4
5 )T

as a result of the deformation.
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(c) A pair of orthonormal material vectors b0 = (1, 0)T and c0 = (0, 1)T

are subjected to the deformation process. Calculate the new angle formed
between these two vectors after deformation.
(d) Demonstrate whether or not the deformation is isochoric.
(e) Calculate the principal stretches λα and the principal material directions
Nα , with α = 1, 2.
(f) Calculate the principal spatial directions nα , with α = 1, 2.

Solution

(a) The deformation gradient, the right Cauchy–Green strain tensor, and
the left Cauchy–Green strain tensor are easily found from Equation (4.50)
as

F =

[
∂x1/∂X1 ∂x1/∂X2

∂x2/∂X1 ∂x2/∂X2.

]
=

[ −2 −1

3/2 −1/2

]
. (4.51)

The right Cauchy–Green tensor C = F TF and the left Cauchy–Green
tensor b = FF T , yielding

C =

[−2 3/2

−1 −1/2

][ −2 −1

3/2 −1/2

]

=

[
6.25 1.25

1.25 1.25

]
, (4.52)

and

b =

[
5 −2.5

−2.5 2.5

]
. (4.53)

(b) Recall textbook Remark 4.3: The general nature of the scalar product
as a measure of deformation can be clarified by taking dX2 and dX1 equal
to dX and consequently dx1 = dx2 = dx. This enables initial (material)
and current (spatial) elemental lengths squared to be determined as

dL2 = dX · dX; dl2 = dx · dx. (4.54)
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The change in the squared lengths that occurs as the body deforms from
the initial to the current configuration can now be written in terms of the
elemental material vector dX as

1
2
(dl2 − dL2) = dX · E dX, (4.55)

which, upon division by dL2, gives the scalar Green’s strain as

dl2 − dL2

2 dL2 =
dX

dL
· E

dX

dL
, (4.56)

where dX/dL is a unit material vector N in the direction of dX; hence,
finally

1
2

(
dl2 − dL2

dL2

)
= N · EN . (4.57)

From Equations (4.9) and (4.4), Equation (4.57) can be rewritten in terms
of the stretch of the unit vector N as

λ2 − 1 = N · (C − I)N

= N · CN − 1. (4.58)

Substituting a0 for N gives

λ2
a0

= a0 · Ca0. (4.59)

Substituting a0 = [ 3
5 , 4

5 ]T and using Equation (4.52) gives

λ2
a0

=
[
3
5
,
4
5

][6.25 1.25

1.25 1.25

] [
3/5
4/5

]
= 4.25 ; λa0 = 2.061. (4.60)

(c) The spatial vectors corresponding to material vectors b0 and c0 are
found using the deformation gradient F as

b = Fb0 ; c = Fc0. (4.61)

Using the cosine rule enables the angle θbc between spatial vectors b and c

to be found as

θbc = cos−1
[

b · c

‖b‖ ‖c‖
]

= cos−1

[
b0 · Cc0

(b0 · Cb0)
1
2 (c0 · Cc0)

1
2

]
. (4.62)
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It is now a simple matter of substitution to find θbc as

b0 · Cc0 = [1, 0]

[
6.25 1.25

1.25 1.25

] [
0
1

]
= 1.25, (4.63a)

b0 · Cb0 = 6.25 ; c0 · Cc0 = 1.25, (4.63b)

θbc = cos−1

[
1.25

(6.25 × 1.25)
1
2

]
= 63.43◦. (4.63c)

(d) To determine whether the deformation is isochoric requires checking
the determinant of the deformation gradient as

J = det (F ) =
(

1 +
3
2

)
= 2.5, (4.64)

which being greater than unit indicates the deformation is not isochoric.

(e) The stretches are found as in the previous example by calculating the
square root of the eigenvalues of the right Cauchy–Green tensor C to give
λ1 = 2.5583 and λ2 = 0.9772. The corresponding normalized eigenvectors
N 1 and N 2 yield the principal material directions

N 1 =

[
0.9732

0.2298

]
; N 2 =

[−0.2298

0.9732

]
. (4.65)

(f) As an alternative to finding the spatial principal vectors as shown in
Equation (4.49), n1 and n2 can be found by normalizing the push forward
of the material principal vectors N 1 and N 2 to give

n1 =
FN 1

‖FN 1‖ =

[−0.8507

0.5257

]
, (4.66a)

n2 =
FN 2

‖FN 2‖ =

[−0.5257

−0.8507

]
. (4.66b)

EXAMPLE 4.5: Textbook Exercise 4.2

(a) If the deformation gradients at times t and t + Δt are F t and F t+Δt

respectively, show that the deformation gradient ΔF relating the incremen-
tal motion from configuration at t to t + Δt is ΔF = F t+ΔtF

−1
t .
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1 1,X x

2 2,X x

3 3,X x

time 0=

time t=

time t t= +Δ

tx

0X
t t+Δx

tφ

t tφ +Δ

tφΔ

FIGURE 4.3 General motion of a deformable body

(b) Using the deformation given in textbook Example 4.5 with X = (0, 0)T ,
t = 1, Δt = 1, show that ΔF = F t+ΔtF

−1
t is correct by pushing forward

the initial vector G = [1, 1]T to vectors gt and gt+Δt at times t and t + Δt

respectively and checking that gt+Δt = ΔFgt.
(c) [Addition to textbook ] Using the deformation given in textbook Exam-
ple 4.5 with X = (0, 0)T and t = 1, calculate the velocity gradient l and
the rate of deformation d.

Solution

(a) Deformation gradients relating to the various configurations shown in
Figure 4.3 can be defined as

F t =
∂xt

∂X
, (4.67a)

F t+Δt =
∂xt+Δt

∂X
, (4.67b)

ΔF =
∂xt+Δt

∂xt
. (4.67c)

From Equation (4.3), which relates an elemental material vector dX to the
corresponding spatial vector dx, relationships can be established between
elemental material and spatial vectors for the configurations shown in
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Figure 4.3:

dxt = F tdX, (4.68a)

dxt+Δt = F t+ΔtdX, (4.68b)

dxt+Δt = ΔF dxt. (4.68c)

Substituting Equation (4.68a) into (4.68c) gives

dxt+Δt = ΔFF tdX. (4.69)

Substituting Equation (4.68b) into (4.69) yields

F t+ΔtdX = ΔFF tdX. (4.70)

Consequently,

ΔF = F t+ΔtF
−1
t . (4.71)

Alternatively the chain rule can be invoked to give a direct solution as

F t+Δt =
∂xt+Δt

∂X

=
∂xt+Δt

∂xt

∂xt

∂X

= ΔFF t, (4.72)

which, rearranged, gives Equation (4.71).

(b) The deformation is given by

x1 = 1
4 (4X1 + (9 − 3X1 − 5X2 − X1X2)t)

x2 = 1
4 (4X2 + (16 + 8X1)t).

From this, the components of the deformation gradient are found to be

F11=
∂x1

∂X1
=

1
4
(
4 + (−3 − X2)t

)
=

4 − (3 + X2)t
4

(4.73a)

F12=
∂x1

∂X2
=

1
4
(
(−5 − X1)t

)
=

−(5 + X1)t
4

(4.73b)

F21=
∂x2

∂X1
=

1
4
(8t) = 2t (4.73c)

F22=
∂x2

∂X2
=

1
4
(4) = 1. (4.73d)
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For X = [0, 0]T this yields

F =

[
1 − 3

4 t − 5t
4

2t 1

]
. (4.74)

Thus for t = 1 and t + Δt = 2,

F t =

[
1
4 − 5

4

2 1

]
; F t+Δt =

[− 1
2 − 5

2

4 1

]
, (4.75)

which enables ΔF to be calculated as

ΔF = F t+ΔtF
−1
t =

[− 1
2 − 5

2

4 1

][
4
11 − 5

11

− 8
11

1
11

]

=

[
18
11 − 5

11

− 8
11

21
11

]
. (4.76)

The push forward of the material vector G = [1, 1]T at times t and t + Δt

becomes

gt = F tG =

[
1
4 − 5

4

2 1

][
1

1

]
=

[−1

3

]
, (4.77a)

gt+Δt = F t+ΔtG =

[− 1
2 − 5

2

4 1

][
1

1

]
=

[−3

5

]
. (4.77b)

Finally gt+Δt can be calculated using Equation (4.68) to give

gt+Δt = ΔFgt =

[
18
11 − 5

11

− 8
11

21
11

][−1

3

]
=

[−3

5

]
. (4.78)

(c) The velocity gradient tensor is given by Equation (4.20) as l = Ḟ F−1

where the inverse of the deformation gradient tensor at t = 1 given in
Equation (4.75) is

F−1
t =

[
4
11

5
11

− 8
11

1
11

]
. (4.79)
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The time derivative of the deformation gradient at t = 1 is obtained from
Equation (4.74) as

Ḟ t =

[− 3
4 − 5

4

2 0

]
. (4.80)

The velocity gradient is now easily found as

l = Ḟ tF
−1
t =

[
7
11 − 5

11
8
11

10
11

]
, (4.81)

and from Equation (4.23) the rate of deformation tensor is calculated as

d = 1
2 (l + lT )

= 1
2

([
7
11 − 5

11
8
11

10
11

]
+

[
7
11

8
11

− 5
11

10
11

])

=

[
14
22

3
22

3
22

20
22

]
. (4.82)

EXAMPLE 4.6: Textbook Exercise 4.3

Using Equation (4.14) prove that the area ratio can be expressed alterna-
tively as

da

dA
= J
√

N · C−1N .

Solution

Equation (4.14) can be expanded to give

da n = JF−TdA N . (4.83)

Squaring both sides yields

da2n · n = J2dA2(F−TN)T(F−TN). (4.84)
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Noting that n · n = 1 and the right Cauchy–Green tensor C = F TF allows
da2 to be extracted as

da2 = J2dA2NT(F−1F−T)N

= J2dA2N · C−1N , (4.85)

gives

da

dA
= J
√

N · C−1N . (4.86)

EXAMPLE 4.7: Textbook Exercise 4.4

Consider the planar (1–2) deformation for which the deformation gradient
is

F =

⎡
⎣F11 F12 0

F21 F22 0
0 0 λ3

⎤
⎦ ,

where λ3 is the stretch in the thickness direction normal to the (1–2) plane.
If dA and da are the elemental areas in the (1–2) plane and H and h the
thicknesses before and after deformation respectively, show that

da

dA
= j and h = H

J

j
,

where j = det(Fkl), k, l = 1, 2.

Solution

From Equation (4.12) the elemental volume ratio is given by

dv = det F dV ; det F = jλ3 λ3 =
h

H
, (4.87)

which can be rewritten in terms of h and H as

h da = H det F dA. (4.88)

Substituting from Equation (4.87) gives

h da = H j
h

H
dA, (4.89)
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FIGURE 4.4 Interpretation of dx = V RdX

hence,

da

dA
= j, (4.90)

and from Equation (4.87)

h = H
detF

j
= H

J

j
. (4.91)

EXAMPLE 4.8: Textbook Exercise 4.5

Using textbook Figure 4.4 as a guide, draw a similar diagram that interprets
the polar decomposition Equation (4.8) dx = V (RdX).

Solution

See Figure 4.4.

EXAMPLE 4.9: Textbook Exercise 4.6

Show that the condition for an elemental material vector dX = NdL to
exhibit zero extension is N · CN = 1, where C = F TF .
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Solution

Consider material and spatial elemental vectors dX = NdL and dx = ndl

where N and n are unit vectors defining the direction of dX and dx

respectively. Consequently,

dx = F dX = FNdL, (4.92)

or alternatively,

ndl = FNdL. (4.93)

Squaring both sides of the above equation gives

n · ndl2 = (FN) · (FN)dL2. (4.94)

Hence,

(
dl

dL

)2

= NT(F TF )N = N · CN , (4.95)

implying that for dl = dL, we have N · CN = 1.

EXAMPLE 4.10: Textbook Exercise 4.7

Prove Equation (4.11), that is,

F−TNα =
1
λα

nα.

Solution

It is instructive to prove that UNα = λαNα as given at the bottom of
textbook page 107 as this is relevant to proving Equation (4.10). Recall
from Equation (4.7) that

U =
3∑

β=1

λβ Nβ ⊗ Nβ , (4.96)
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hence

UNα =
( 3∑

β=1

λβ Nβ ⊗ Nβ

)
Nα

=
3∑

β=1

λβ(Nα · Nβ)Nβ

= λαNα. (4.97)

In a similar manner and in preparation for solving this Exercise, it can be
shown using Equation (4.6) that

C−1Nα =
( 3∑

β=1

1
λ2

β

Nβ ⊗ Nβ

)
Nα

=
1
λ2

α

Nα. (4.98)

Multiplying FNα = RUNα through by F−TF−1 and noting that
UNα = λαNα gives

F−TNα = F−TF−1RUNα

= λα(F−T)(F−1)RNα. (4.99)

Recalling that R−1 = RT and UT = U yields

F−TNα = λα(R−TU−T)(U−1R−1)RNα

= λαRU−1U−1Nα

= λαRC−1Nα

= λαR
1
λ2

α

Nα

=
1
λα

RNα

=
1
λα

nα. (4.100)
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EXAMPLE 4.11: Textbook Exercise 4.8

The motion of a body, at time t, is given by

x = F (t)X; F (t) =

⎡
⎢⎣

1 t t2

t2 1 t

t t2 1

⎤
⎥⎦ ; (4.101a)

F−1(t) =
1

(t3 − 1)

⎡
⎢⎣
−1 t 0

0 −1 t

t 0 −1

⎤
⎥⎦ . (4.101b)

Find the velocity of the particle, (a) initially at X = (1, 1, 1)T at time t = 0;
and (b) currently at x = (1, 1, 1)T at time t = 2. Using J = dv/dV show
that at time t = 1 the motion is not realistic.

Solution

From Equations (4.19) and (4.101) the velocity can be found to be

v(X, t)=
∂φ(X, t)

∂t
=

∂F (t)
∂t

X =

⎡
⎢⎣

0 1 2t

2t 0 1
1 2t 0

⎤
⎥⎦X. (4.102)

Consequently at time t = 0 and X = (1, 1, 1)T the velocity v = (1, 1, 1)T .
The material coordinates X can be written in terms of the spatial coordinates
x as X = F−1(t)x; thus for time t = 2 and x = (1, 1, 1)T , the material
coordinates are calculated as

X =
1

(t3 − 1)

⎡
⎢⎣
−1 t 0

0 −1 t

t 0 −1

⎤
⎥⎦

t=2

⎡
⎢⎣

1
1
1

⎤
⎥⎦ =

1
7

⎡
⎢⎣

1
1
1

⎤
⎥⎦ . (4.103)

Using the above material coordinates together with Equation (4.102), the
velocity at t = 2 is simply found to be

v =

⎡
⎢⎣

0 1 4
4 0 1
1 4 0

⎤
⎥⎦ 1

7

⎡
⎢⎣

1
1
1

⎤
⎥⎦ =

5
7

⎡
⎢⎣

1
1
1

⎤
⎥⎦ . (4.104)
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Finally, det F = t3 − 1 hence at t = 1 det F = 0; that is, the material
has vanished!

EXAMPLE 4.12: Textbook Exercise 4.9

For a pure expansion the deformation gradient is F = αI , where α is a
scalar (function of time). Show that the rate of deformation is

d =
α̇

α
I.

Solution

The material time derivative of F is easily determined as Ḟ = α̇I . From
Equation (4.21) the material time derivative of Green’s strain is found to be

Ė = 1
2 (Ḟ

T
F + F TḞ )

= 1
2 α̇(F + F T)

= 1
2 α̇(αI + αI)

= α̇ αI. (4.105)

The rate of deformation can now be calculated from Equation (4.22) as

d = F−TĖF−1 =
α̇

α
I. (4.106)

EXAMPLE 4.13: Textbook Exercise 4.10

Show that at the initial configuration, F = I , the linearization of Ĉ in the
direction of a displacement u is

DĈ[u] = 2ε′ = 2
[
ε − 1

3 (trε)I
]
.

Solution

Recall from Equations (4.13) and (4.2) that

Ĉ = III
− 1

3
C C, (4.107)
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where C is the right Cauchy–Green tensor and IIIC is the third invariant
(i.e., the determinant) of C. Consequently,

DĈ[u] = −1
3
III

− 4
3

C DIIIC[u]C +III
− 1

3
C DC[u]. (4.108)

Noting that IIIC = det C = J2 and from Equation (4.18) that DJ [u] =
J trε, enables the directional derivative DIIIC[u] to be determined as

DIIIC[u] = DJ2[u]

= 2J DJ [u]

= 2J2 trε

= 2IIIC(trε). (4.109)

Turning attention to the second directional derivative in Equation (4.108),
observe that textbook Equation (4.74a) gives DC[u] = 2F TεF , which is
proved using Equations (4.15) and (4.16) as follows:

DC[u] = D(F TF )[u]

= DF T[u]F + F TDF [u]

= F T(∇u)F + F T(∇u)TF

= F T(∇u + (∇u)T)F
= 2F TεF . (4.110)

Consequently Equation (4.108) can be rewritten as

DĈ[u] = −1
3
III

− 4
3

C 2IIIC(trε)C +III
− 1

3
C 2F TεF

= −2
3
III

− 1
3

C (trε)C + 2III
− 1

3
C F TεF . (4.111)

At the initial configuration F = I , C = I and IIIC = 1; hence

DĈ[u] = −2
3

trεI + 2ε = 2
[
ε − 1

3
(trε)I

]
. (4.112)



 

C H A P T E R F I V E

STRESS AND EQUILIBRIUM

The examples presented in this chapter largely focus on the consequences
of describing the virtual work expression of equilibrium in either a spatial
or material configuration. An immediate result is the emergence of various
alternative stress measures and the concept of work conjugacy. Examples
involving stress rates and objective stress rates are also considered.

Equation summary

Vector projection interpretation of the tensor product [2.28]

(u ⊗ v)w = (w · v)u. (5.1)

Double product A : B in terms of the trace [2.51]

A : B = tr(AT B) = tr(BAT ) = tr(BT A)

= tr(ABT ) =
3∑

i, j=1

AijBij . (5.2)

Elemental area relation (Nanson’s formula) [4.68]

da = JF−T dA. (5.3)

Virtual internal work as a function of the first Piola–Kirchhoff stress P

[5.33]

δWint =
∫

V
P : δḞ dV ; P = JσF−T . (5.4)

67
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Material differential equilibrium equation [5.36]

∇0P + f 0 = 0 ; ∇0P =
∂P

∂X
. (5.5)

Elemental force vector dp(σ) [5.38]

dp = tda = σda. (5.6)

Elemental force vector dp(P ) [5.39]

dp = JσF−T dA = PdA. (5.7)

Cauchy stress σ in terms of first Piola–Kirchhoff stress P [5.45a]

σ = J−1PF T . (5.8)

Kirchhoff stress tensor τ = Jσ as the push forward of second Piola–
Kirchhoff stress S [5.46b]

τ = FSF T . (5.9)

Time derivative of inverse of the deformation gradient F [5.55]

d

dt
F−1 = −F−1l. (5.10)

Deviatoric and pressure components of the Cauchy stress σ [5.49]

σ = σ′ + pI; p =
1
3

trσ =
1
3
σ : I. (5.11)

Deviatoric and pressure components of the first Piola–Kirchhoff stress P

[5.50a]

P = P ′ + pJF−T ; P ′ = Jσ′F−T . (5.12)

Convective stress rate [5.60]

σ� = F−T

[
d

dt
(F T σF )

]
F−1

= σ̇ + lT σ + σl. (5.13)

Jaumann stress rate, see [5.62]

σ� = σ̇ + σw − wσ. (5.14)

EXAMPLE 5.1

A three-dimensional finite deformation of a continuum from an initial con-
figuration X = (X1, X2, X3)T to a final configuration x = (x1, x2, x3)T
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is given as

x1(X) = 5 − 3X1 − X2 (5.15a)

x2(X) = 2 +
5
4
X1 − 2X2 (5.15b)

x3(X) = X3. (5.15c)

In addition, the first Piola–Kirchhoff stress tensor is given by

P =

⎡
⎣X1 X1 0

α X2 0
0 0 X3

⎤
⎦ . (5.16)

(a) Determine if the deformation is isochoric.
(b) Determine the value of α so that the stress tensor P satisfies rotational
equilibrium.
(c) Determine the body force field f 0 per unit undeformed volume such
that the material differential equilibrium Equation (5.5) is satisfied.

Solution

(a) From Equation (5.15) the deformation gradient is found as

F =

⎡
⎢⎢⎣

∂x1/∂X1 ∂x1/∂X2 ∂x1/∂X3

∂x2/∂X1 ∂x2/∂X2 ∂x2/∂X3

∂x3/∂X1 ∂x3/∂X2 ∂x3/∂X3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−3 −1 0

5
4 −2 0

0 0 1

⎤
⎥⎥⎦ . (5.17)

The volume ratio J = det F is 7.25 which means the deformation is non-
isochoric.
(b) From Equation (5.8), σ = J−1PF T which is symmetric since σ = σT;
hence

Jσ =

⎡
⎣X1 X1 0

α X2 0
0 0 X3

⎤
⎦
⎡
⎢⎣
−3 5

4 0

−1 −2 0

0 0 1

⎤
⎥⎦

=

⎡
⎢⎣

−4X1 − 3
4X1 0

−(3α + X2) (5
4α − 2X2) 0

0 0 X3

⎤
⎥⎦ . (5.18)
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Symmetry requires that

− 3
4
X1 = −(3α + X2) ; α =

X1

4
− X2

3
, (5.19)

giving

σ =
4
29

⎡
⎢⎣
−4X1 − 3

4X1 0

−3
4X1 ( 5

16X1 − 29
12X2) 0

0 0 X3

⎤
⎥⎦ . (5.20)

(c) From Equation (5.5) the material body force vector is

f 0 = −∇0P =
3∑

i,J=1

∂PiJ

∂XJ
, (5.21)

where

P =

⎡
⎣ X1 X1 0

(X1
4 − X2

3 ) X2 0
0 0 X3

⎤
⎦ , (5.22)

hence

f 0 = −
⎡
⎣ 1

5
4
1

⎤
⎦ . (5.23)

EXAMPLE 5.2

The deformation of a body is described by

x1 = −3X2 ; x2 =
3
2
X1 ; x3 = X3, (5.24)

and the Cauchy stress tensor at a certain point in the spatial configuration
is

σ =

⎡
⎣10 2 0

2 30 0
0 0 10

⎤
⎦ . (5.25)
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Determine the Cauchy traction vector t = σn and the first Piola–Kirchhoff
traction vector tP K = PN acting on a plane characterized by the spatial
outward normal n = (0, 1, 0)T .

Solution

From Equation (5.24) the basic kinematic deformation gradient quantities
are easily found as

F =

⎡
⎢⎣

0 −3 0
3
2 0 0
0 0 1

⎤
⎥⎦ ; F−1 =

⎡
⎢⎣

0 2
3 0

− 1
3 0 0
0 0 1

⎤
⎥⎦ , (5.26)

F T =

⎡
⎢⎣

0 3
2 0

−3 0 0
0 0 1

⎤
⎥⎦ ; F−T =

⎡
⎢⎣

0 −1
3 0

2
3 0 0
0 0 1

⎤
⎥⎦ . (5.27)

From Equation (5.26) the elemental volume ratio J = det F = 9/2. The
Cauchy stress tensor is trivially found as

t = σn =

⎡
⎢⎣

10 2 0
2 30 0
0 0 10

⎤
⎥⎦
⎡
⎢⎣

0
1
0

⎤
⎥⎦ =

⎡
⎢⎣

2
30
0

⎤
⎥⎦ . (5.28)

From Nanson’s formula given by Equation (5.3) the material unit normal
N is the pull back of the spatial unit normal n as

N =
(

J−1da

dA

)
F Tn, (5.29)

where da and dA are now scalars. Insofar as N is a unit vector

N =
F Tn

‖F Tn‖ . (5.30)
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For the spatial unit normal n = (0, 1, 0)T it is easy to find N = (1, 0, 0)T .
Using Equation (5.8) the first Piola–Kirchhoff stress is found as

P = JσF−T

=
9
2

⎡
⎣10 2 0

2 30 0
0 0 10

⎤
⎦
⎡
⎢⎣

0 −1
3 0

2
3 0 0
0 0 1

⎤
⎥⎦

=
9
2

⎡
⎢⎣

4
3 − 10

3 0
20 −2

3 0
0 0 10

⎤
⎥⎦ . (5.31)

Consequently for N = (1, 0, 0)T

tP K = PN =
9
2

⎡
⎢⎣

4
3

20
0

⎤
⎥⎦ =

⎡
⎢⎣

6
90
0

⎤
⎥⎦ . (5.32)

It is worth exploring this example a little more since both σ and P should
yield the same elemental force vector dp provided they are post multiplied
by the spatial and material elemental areas da and dA, respectively. To
this end Equation (4.86) is employed to calculate the area ratio using the
material unit vector N associated with area dA and the inverse of the right
Cauchy–Green deformation tensor C−1 as

da

dA
= J
√

N · C−1N ; C−1 = F−1F−T. (5.33)

For N = (1, 0, 0)T and using Equations (5.26) and (5.27), the area ratio is
calculated as

da

dA
= 3. (5.34)

Using Equations (5.6), (5.7), (5.28), and (5.32), the elemental force vector
dp can be variously calculated in terms of the Cauchy stress σ and first
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Piola–Kirchhoff stress P as

dp = σnda =

⎡
⎢⎣

10 2 0
2 30 0
0 0 10

⎤
⎥⎦
⎡
⎢⎣

0
1
0

⎤
⎥⎦ da =

⎡
⎢⎣

2
30
0

⎤
⎥⎦ da. (5.35)

Or

dp = PNdA =
9
2

⎡
⎢⎣

4
3 − 10

3 0
20 −2

3 0
0 0 10

⎤
⎥⎦
⎡
⎢⎣

1
0
0

⎤
⎥⎦ dA =

⎡
⎢⎣

6
90
0

⎤
⎥⎦ dA. (5.36)

Observing that dA = da/3 shows that the same elemental force can be
calculated using either a spatial or material description.

EXAMPLE 5.3: Textbook Exercise 5.1

A two-dimensional Cauchy stress tensor is given as

σ = t ⊗ n1 + α n1 ⊗ n2,

where t is an arbitrary vector and n1 and n2 are orthogonal unit vectors.
(a) Describe graphically the state of stress.
(b) Determine the value of α. (Hint: σ must be symmetric.)

Solution

To reveal the two-dimensional nature of the stress tensor, investigate the
traction vector existing on planes normal to the two orthogonal axes. This
is achieved by multiplying σ, in turn, by n1 and n2 and employing Equa-
tion (5.1):

σn1 = (t ⊗ n1)n1 + α(n1 ⊗ n2)n1

= (n1 · n1) t + α(n1 · n2)n1

= t. (5.37)

σn2 = (t ⊗ n1)n2 + α(n1 ⊗ n2)n2

= (n2 · n1) t + α(n2 · n2)n1

= α n1. (5.38)
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FIGURE 5.1 Example 5.3

Consequently the traction vector t operates on the surface normal to n1

while a shear force of magnitude α acts in the n1 direction in the surface
normal to n2, see Figure 5.1. It is easy to show that since σ is symmetric
then n1 · σn2 = n2 · σn1. Expanding these terms enables α to be found
as follows:

n1 · σn2 = n1 · (t ⊗ n1)n2 + αn1 · (n1 ⊗ n2)n2

= n1 · (n2 · n1)t + αn1 · (n2 · n2)n1

= α. (5.39)

n2 · σn1 = n2 · (t ⊗ n1)n1 + αn2 · (n1 ⊗ n2)n1

= n2 · (n1 · n1)t + αn2 · (n1 · n2)n1

= n2 · t. (5.40)

This gives α = n2 · t which is also the magnitude of the component
of t in the direction n2 required for symmetry of the Cauchy stress
tensor.

EXAMPLE 5.4: Textbook Exercise 5.2

Using Equation (5.10) and a process similar to that employed in textbook
Example 5.5, page 150, show that, with respect to the initial volume, the
stress tensor Π is work conjugate to the tensor Ḣ , where H = −F−T and
Π = PC = JσF .
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Solution

Observe from Equation (5.4) that the first Piola–Kirchhoff stress tensor P

is work conjugate to the time derivative of the deformation gradient F .
Consequently the work term P : Ḟ will provide a vehicle for addressing
the question. The term Ḟ can be found by taking the time derivative of the
identity FF−1 = I as:

d

dt
(FF−1) = Ḟ F−1 + F Ḟ

−1
= 0, (5.41)

hence

Ḟ = −F Ḟ
−1

F . (5.42)

The first Piola–Kirchhoff stress tensor is P = JσF−T which together with
the above equation and the properties of the trace given by Equation (5.2)
gives

P : Ḟ = −(JσF−T) :
(
F Ḟ

−1
F
)

= −J tr
(
σF−T(F Ḟ

−1
F )T)

= −J tr
(
σF−TF TḞ

−T
F T)

= −J tr
(
σ(Ḟ

−T
F T)

)
= −J tr

(
(Ḟ

−T
(F Tσ)

)
= −J tr

(
Ḟ

−T
(σF )T)

= −JσF : Ḟ
−T

= Π : Ḣ, (5.43)

where use has been made of the symmetry of σ. Equation (5.43) shows
that Π is work conjugate to Ḣ . Using Equation (5.8) it is easy to show that
PC = JσF .

EXAMPLE 5.5: Textbook Exercise 5.3

Using the time derivative of the equality CC−1 = I , show that the tensor
Σ = CS C = JF TσF is work conjugate to 1

2 Ḃ, where B = −C−1 with



 

76 S T R E S S A N D E Q U I L I B R I U M

respect to the initial volume. Find relationships between T (Biot stress
tensor), Σ, and Π.

Solution

The time derivative of CC−1 = I is simply found to be

d

dt
(CC−1) = ĊC−1 + CĊ

−1
= 0, (5.44)

hence

Ċ = −CĊ
−1

C. (5.45)

A starting point can be found by observing that the second Piola–Kirchhoff
stress tensor S is work conjugate to the time derivative of the Green’s strain
E with respect to the initial volume and that Ė = 1

2 Ċ where C is the right
Cauchy–Green tensor. Hence,

S : Ė =
1
2
S : Ċ. (5.46)

Substituting from Equation (5.45) for Ċ and using the properties of
the trace given by Equation (5.2) together with symmetries of S and
C enables the work conjugate relationship between Σ and 1

2 Ḃ to be
found:

S : Ė = −1
2
S : (CĊ

−1
C)

= −1
2

tr(STCĊ
−1

C)

= −1
2

tr
(
(SCĊ

−1
)CT)

= (CS C) :
(
− 1

2
Ċ

−1
)

= Π :
(

1
2

Ḃ

)
. (5.47)
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From textbook Example 5.5 (page 150) the Biot stress tensor is

T =
1
2
(SU + US). (5.48)

Noting the following relationships

F = RU ; U = RTF , (5.49)

P = FS ; S = F−1P , (5.50)

and that S and U are symmetric enables the Biot stress to be expressed as

T =
1
2
(
(P TF−T) (RTF ) + (RTF ) (F−1P )

)
=

1
2
(P TF−TF TR + RTFF−1P )

=
1
2
(P TR + RTP ). (5.51)

From the previous example, Π = PC, hence

T =
1
2
(C−1 ΠTR + RTΠC−1). (5.52)

We can now find Π in terms of Σ using Equation (5.50) as follows:

Σ = CSC

= CF−1PC

= F TFF−1ΠC−1C

= F TΠ. (5.53)

Recalling that Σ is symmetric gives

Π = F−TΣ ; ΠT = ΣF−1. (5.54)

Substituting into Equation (5.52) gives

T =
1
2
(C−1 ΣF−1R + RTF−TΣC−1). (5.55)

Again noting that U is symmetric and that F = RU gives

T =
1
2
(C−1 ΣU−1 + U−1ΣC−1). (5.56)
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EXAMPLE 5.6: Textbook Exercise 5.4

Prove P ′ : F = 0 using a procedure similar to textbook Example 5.6, page
152, where P ′ is the deviatoric component of the first Piola–Kirchhoff
stress tensor and F if the deformation gradient tensor.

Solution

From Equations (5.11) and (5.12) the deviatoric first Piola–Kirchhoff stress
tensor can be written as

P ′ = Jσ′F−T

= J(σ − pI)F−T

= J(σ − 1
3 trσI)F−T. (5.57)

We can therefore expand P ′ : F = 0 as

P ′ : F = J(σF−T) : F − 1
3J trσ(IF−T) : F

= J tr
(
(F−1σ)F

)− 1
3J trσtr(F−1IF )

= J tr(FF−1σ) − 1
3J trσtr(I)

= J tr(σ) − 1
3J trσ (3)

= 0. (5.58)

EXAMPLE 5.7: Textbook Exercise 5.5

Prove directly that the Jaumann stress (rate) tensor, σ�, is an objective
tensor, using a procedure similar to textbook Example 5.7, page 154.

Solution

Recall from Equation (5.14) that the Jaumann stress rate tensor is given by
σ� = σ̇ + σw − wσ and that for σ� to be objective under the action of
a superimposed rigid body motion Q, then σ̃� = Qσ�QT .
The rotated Jaumann stress rate tensor is

σ̃� = ˙̃σ + σ̃w̃ − w̃σ̃, (5.59)
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where, from textbook Equations (5.11), (5.53), and (4.108)

σ̃ = QσQT (5.60a)

˙̃σ = Qσ̇QT + Q̇σQT + QσQ̇
T

(5.60b)

w̃ = 1
2 (̃l − l̃

T
), (5.60c)

and where textbook Equations (4.108) and (4.137) give

l̃ = QlQT + Q̇QT (5.61a)

l̃
T

= QlTQT + QQ̇
T

(5.61b)

w̃ = QwQT + 1
2 (Q̇QT − QQ̇

T
). (5.61c)

Substitute Equations (5.60a–5.60c) and (5.61a–5.61c) into Equation (5.59)
and note that QQT = I to give

σ̃� = Qσ̇QT + Q̇σQT + QσQ̇
T

+ QσQT(QwQT + 1
2 (Q̇QT − QQ̇

T
)
)

− (QwQT + 1
2 (Q̇QT − QQ̇

T
)
)
QσQT

= Qσ̇QT + Q̇σQT + QσQ̇
T

+ QσwQT + 1
2QσQTQ̇QT − 1

2QσQ̇
T

−QwσQT − 1
2 Q̇σQT + 1

2QQ̇
T
QσQT. (5.62)

Since QQT = I ,

Q̇QT + QQ̇
T

= 0. (5.63a)

Q̇
T

= −QTQ̇QT. (5.63b)

Observe that the underlined elements in Equation (5.62) constitute the
objective measure of the Jaumann stress tensor: that is,

Qσ̇QT + QσwQT − QwσQT = Qσ�QT. (5.64)
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Now substituting for Q̇
T

in Equation (5.62) gives

σ̃� = Qσ�QT + Q̇σQT − QσQTQ̇QT

+ 1
2QσQTQ̇QT + 1

2QσQTQ̇QT

− 1
2 Q̇σQT − 1

2QQTQ̇QTQσQT

= Qσ�QT, (5.65)

thus proving the objectivity of the Jaumann stress rate tensor.

EXAMPLE 5.8: Textbook Exercise 5.6

Prove that if dx1 and dx2 are two arbitrary elemental vectors moving with
the body (see textbook Figure 4.2), then

d

dt
(dx1 · σdx2) = dx1 · σ�dx2,

where we recall from Equation (5.13) that σ� is the convective stress rate
given by

σ� = σ̇ + lTσ + σl. (5.66)

Solution

When dealing with time derivatives of spatial vectors such as dx1 and dx2 it
is convenient to re-express them in terms of the equivalent material vectors
as dx1 = F dX1 and dx2 = F dX2. Consequently,

dx1 · σdx2 = (F dX1) · σ(F dX2)

= dX1 · (F TσF ) dX2. (5.67)

This enables the time derivative to be taken independent of the material
vectors, thus:

d

dt
(dx1 · σdx2) = dX1 · d

dt
(F TσF ) dX2. (5.68)
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Applying the chain rule to the time derivative in the above equation and
noting from Equation (4.20) that Ḟ = lF yields

d

dt
(F TσF ) = Ḟ

T
σF + F Tσ̇F + F TσḞ

= F TlTσF + F Tσ̇F + F TσlF

= F T(σ̇ + σl + lTσ)F (5.69)

= F Tσ�F . (5.70)

Substitute the above equation into Equation (5.68) to give

d

dt
(dx1 · σdx2) = (F dX1) · σ�(F dX2)

= dx1 · σ�dx2. (5.71)



 

C H A P T E R S I X

HYPERELASTICITY

Equation summary

First tensor invariant [2.47]

IS = trS =
3∑

i=1

Sii. (6.1)

Pull back of the rate of deformation [4.100]

Ė = φ−1
∗ [d] = F T dF . (6.2)

Constitutive equation for second Piola–Kirchhoff stress [6.7b]

S = 2
∂Ψ
∂C

=
∂Ψ
∂E

. (6.3)

Material elasticity tensor [6.11]

C =
∂S

∂E
= 2

∂S

∂C
. (6.4)

Piola push forward of constitutive tensor [6.14]

c =
3∑

i , j , k , l = 1
I , J , K , L = 1

J−1FiIFjJFkKFlL CIJKL ei ⊗ ej ⊗ ek ⊗ el. (6.5)

Derivatives of second and third invariants of a symmetric second-order
tensor [6.19b, 6.22]

∂IIC

∂C
= 2C ;

∂IIIC
∂C

= IIICC−1. (6.6)

82
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Push forward of fourth-order tensor I [6.39]

i = φ∗[I ]; i ijkl =
3∑

I,J,K,L=1

FiIFjJFkKFlLIIJKL

=
1
2

(δikδjl + δilδjk) . (6.7)

where

I = −∂C−1

∂C
; IIJKL = −∂(C−1)IJ

∂CKL
. (6.8)

Incompressible neo-Hookean material – hyperelastic potential [6.52]

Ψ(C) =
1
2
μ(trC − 3). (6.9)

Incompressible neo-Hookean material – second Piola–Kirchhoff stress ten-
sor [6.54]

S = μIII−1/3
C (I − 1

3 ICC−1) + pJC−1. (6.10)

Incompressible neo-Hookean material – Cauchy stress tensor [6.55]

σ = σ′ + pI ; σ′ = μJ−5/3(b − 1
3
IbI). (6.11)

Isotropic elasticity in principal directions – Cauchy stress [6.79]

σ =
3∑

α=1

σαα nα ⊗ nα ; σαα =
1
J

∂Ψ
∂ lnλα

. (6.12)

Simple in-plane stretch-based hyperelastic material [6.118]

σαα =
λ̄

jγ
ln j +

2μ

jγ
lnλα ; J = jγ ; λ̄ =

2μλ

λ + 2μ
. (6.13)

EXAMPLE 6.1

A modified St. Venant–Kirchhoff constitutive behavior is defined by its
corresponding strain energy functional Ψ as

Ψ(J,E) =
κ

2
(lnJ)2 + μIIE (6.14)



 

84 H Y P E R E L A S T I C I T Y

whereIIE = tr(E2) denotes the second invariant of the Green strain tensor
E, J is the Jacobian of the deformation gradient, and κ and μ are positive
material constants.
(a) Obtain an expression for the second Piola–Kirchhoff stress tensor S as
a function of the right Cauchy–Green strain tensor C.
(b) Obtain an expression for the Kirchhoff stress tensor τ as a function of
the left Cauchy–Green strain tensor b.
(c) Calculate the material elasticity tensor.

Solution

From Equation (6.3) the second Piola–Kirchhoff stress tensor is found as

S =
∂Ψ
∂J

∂J

∂E
+

∂Ψ
∂IIE

∂IIE
∂E

. (6.15)

Now consider the various terms in Equation (6.15). The simple derivatives
in the above equation are easily found as

∂Ψ
∂J

=
κ

J
lnJ ;

∂Ψ
∂IIE

= μ. (6.16)

Recalling that E = (C − I)/2 and, from the properties of the determinant,
J2 = IIIC the derivative of J with respect to E is found with the aid of
Equation (6.6) as

∂J

∂E
=

∂J

∂IIIC

(
∂IIIC

∂C
:

∂C

∂E

)
(6.17a)

=
1
2
III

− 1
2

C

(
2
∂IIIC

∂C

)
(6.17b)

=
1
2
III

− 1
2

C (2J2C−1) (6.17c)

= JC−1. (6.17d)

Again using Equation (6.6) for the determination of the final term in Equa-
tion (6.15), the second Piola–Kirchhoff stress tensor emerges as a function
of C as

S = κ ln JC−1 + μ(C − I). (6.18)
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(b) The Kirchhoff stress tensor is simply found by pushing forward
the second Piola–Kirchhoff stress as given by Equation (5.9), which
yields

τ = FSF T = κ ln JFC−1F T + μFCF T − μFIF T

= κ lnJI + μb(b − I). (6.19)

(c) From Equation (6.4) the material elasticity tensor is

C = 2
∂S

∂C
= 2

∂

∂C

(
κ ln JC−1 + μ(C − I)

)
(6.20a)

= 2κC−1 ⊗ ∂ lnJ

∂C
+ 2κ ln J

∂C−1

∂C
+ 2μ

∂C

∂C
(6.20b)

= 2κC−1 ⊗ ∂ lnJ

∂J

∂J

∂C
− 2κ ln JI + 2μi (6.20c)

= 2κC−1 ⊗ 1
J

J

2
C−1 − 2κ ln JI + 2μi (6.20d)

= κC−1 ⊗ C−1 − 2κ ln JI + 2μi. (6.20e)

EXAMPLE 6.2: Textbook Exercise 6.1

In a plane stress situation, the right Cauchy–Green tensor C is

C =

⎡
⎢⎣

C11 C12 0
C21 C22 0
0 0 C33

⎤
⎥⎦ ; C33 =

h2

H2 ,

where H and h are the initial and current thickness respectively. Show that
incompressibility implies

C33 = III −1
C

; (C −1)33 = IIIC ; C =

[
C11 C12

C21 C22

]
,

where IIIC = det C. Using these equations, show that for an incompress-
ible neo-Hookean material the plane stress condition S33 = 0 enables the
pressure in Equation (6.10) to be explicitly evaluated as

p = 1
3μ
(
IC − 2III−1

C

)
,
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and therefore the in-plane components of the second Piola–Kirchhoff and
Cauchy tensors are

S = μ
(
Ī −III−1

C
C

−1);
σ̄ = μ(b̄ −III−1

b̄
Ī),

where the overline indicates the 2 × 2 in-plane components of a tensor.

Solution

The determinant of C is easily calculated as

det C = C11C22C33 − C21C12C33

= C33 det C

= C33IIIC. (6.21)

Incompressibility implies that detC = 1, hence

C33 = III−1
C

; C −1
33 = IIIC. (6.22)

Using Equation (6.10) the component S33 is found to be

S33 = μIII
−1/3
C (1 − 1

3 IC C−1
33 ) + pJ C−1

33 = 0. (6.23)

If the material is incompressible, J = 1, IIIC = 1, and using the second
part of Equation (6.22)2 yields

p = −μ(C33 − 1
3 IC)

= μ(1
3 IC − C33)

= μ(1
3 IC + 1

3C33 − C33)

= 1
3μ(IC − 2C33)

= 1
3μ(IC − 2III−1

C
). (6.24)

Substituting into Equation (6.10) yields the 2 × 2 components of S:

S = μ
(
Ī − 1

3 (C33 + IC)C −1)+ 1
3μ
(
IC − 2III−1

C

)
C

−1

= μ
(
Ī −III−1

C
C

−1)
. (6.25)
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Pushing forward using σ̄ = J−1 F SF
T

, see Equation (6.11), and noting
that J = 1 gives

σ̄ = μJ F (Ī −III−1
C

C
−1)F T

= μ
(
F Ī F

T −III−1
C

F (C −1)F T)
= μ
(
b̄ −III−1

b̄
F (F −1

F
−T )F T)

= μ(b̄ −III−1
b̄

Ī). (6.26)

EXAMPLE 6.3: Textbook Exercise 6.2

Show that the equations in Example 6.2 can also be derived by imposing
the condition C33 = III−1

C
in the neo-Hookean elastic function Ψ to give

Ψ(C) = 1
2μ(IC +III−1

C
− 3),

from which S is obtained by differentiation with respect to the in-plane
tensor C. Finally, prove that the Lagrangian and Eulerian in-plane elasticity
tensors are

C = 2μIII −1
C

(C −1 ⊗ C
−1 + I );

c̄ = 2μIII−1
b̄

(Ī ⊗ Ī + i ).

Solution

Recall the definition of the incompressible hyperelastic potential Ψ(C)
given by Equation (6.9) together with the trace definition given by Equa-
tion (6.1):

Ψ(C) = 1
2μ(tr C − 3); tr C = IC, (6.27)

where, using Equation (6.22), IC = IC + C33 = IC +III−1
C

. Equa-

tion (6.27) can now be written as a function of C thus:

Ψ(C) = 1
2μ(IC +III−1

C
− 3). (6.28)
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Differentiating with respect to C allows the second Piola–Kirchhoff stress
tensor S to be evaluated as

S = 2
∂Ψ(C)

∂C

= μ
∂IC

∂C
+ μ

∂III−1
C

∂C

= μĪ − μ
1

III−2
C

∂IIIC

∂C

= μĪ − μIII−1
C

C
−1

. (6.29)

Differentiating the above equation yields the Lagrangian elasticity tensor:

C = 2
∂S

∂C

= −2μC
−1 ⊗ ∂III−1

C

∂C
− 2μIII−1

C

∂C
−1

∂C

= 2μIII−1
C

C
−1 ⊗ C

−1 + 2μIII−1
C

I. (6.30)

Noting the derivation of Equation (6.26) and Equation (6.7), pushing for-
ward the above equation to the current configuration easily gives the spatial
constitutive tensorc̄ as

c̄ = φ∗[ C ] = 2μIII−1
b̄

φ∗[C−1 ⊗ C−1] + 2μIII−1
b̄

φ∗[ I ], (6.31)

where noting that C−1 = F−1F−T and employing indicial notation yields

φ∗[C−1 ⊗ C−1]ijkl

=
2∑

I,J,K,L=1

FiIFjJFkKFlL[C−1]IJ [C−1]KL (6.32a)

=
2∑

I,J,K,L,m,n=1

[
FiIFjJF−1

ImF−1
Jm

] [
FkKFlLF−1

KnF−1
Ln

]
(6.32b)

=
2∑

m,n=1

[δimδjm ] [δknδln] (6.32c)

= δijδkl. (6.32d)
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Similarly the push forward of I is obtained from Equation (6.7) as

φ∗[I ]ijkl =
1
2
(δikδjl + δilδjk). (6.33)

Combining the above expressions gives

c̄ = 2μIII−1
b̄

(Ī ⊗ Ī + i ). (6.34)

EXAMPLE 6.4: Textbook Exercise 6.3

Using the pull back–push forward relationships between Ė and d and
between C andc , show that

Ė : C : Ė = Jd :c : d

for any arbitrary motion.

Solution

Recall Equation (6.2) giving the pull back of the rate of deformation d to
the rate of Green’s strain Ė:

Ė = F TdF . (6.35)

Consequently

Ė : C : Ė = (F TdF ) : C : (F TdF )

=
3∑

i,j,k,l=1

3∑
I,J,K,L=1

FiIdijFjJCIJKLFkKdklFlL

=
3∑

i,j,k,l=1

3∑
I,J,K,L=1

dij(FiIFjJCIJKLFkKFlL)dkl

=
3∑

i,j,k,l=1

dij(Jcijkl)dkl

= Jd : c : d. (6.36)
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EXAMPLE 6.5: Textbook Exercise 6.4

Using the simple stretch-based hyperelastic equations discussed in text-
book Section 6.6.7, show that the principal stresses for a simple shear test
are

σ11 = −σ22 = 2μ sinh−1 γ
2 .

Find the Cartesian stress components.

Solution

From Example 6.4, textbook page 165, the left Cauchy–Green tensor for
simple shear is

b =
[
1 + γ2 γ

γ 1

]
, (6.37)

where only two-dimensional components have been considered. The eigen-
values of b are the squared principal stretches λα , which satisfy the
equation

det
[
(1 + γ2) − λ2 γ

γ 1 − λ2

]
= 0, (6.38)

or [
(1 + γ2) − λ2](1 − λ2) − γ2 = 0 (6.39)

(1 − λ2)(1 − λ2) = γ2λ2, (6.40)

hence

(1 − λ2) = ±λγ (6.41)

λ2 ± λγ − 1 = 0, (6.42)

which gives two positive values for λ:

λ1 =
γ

2
+

√(
γ

2

)2

+ 1 ; λ2 = −γ

2
+

√(
γ

2

)2

+ 1. (6.43)
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Using the simple stretch-based hyperelastic material given by Equa-
tion (6.13) and noting J = 1 gives

σ11 = 2μ ln
(

γ

2
+

√(
γ

2

)2

+ 1
)

= 2μ sinh−1
(

γ

2

)
, (6.44)

σ22 = 2μ ln
(
− γ

2
+

√(
γ

2

)2

+ 1
)

= 2μ sinh−1
(−γ

2

)

= −2μ sinh−1
(

γ

2

)
. (6.45)

From Equation (6.12) the Cartesian components of the Cauchy stress are
found, using the principal directions (eigenvectors) nα , to be

σ =
2∑

α=1

σαα nα ⊗ nα, (6.46)

where the nα satisfy the equations[
(1 + γ2) − λ2 γ

γ 1 − λ2

][
n1

α

n2
α

]
=

[
0

0

]
. (6.47)

Substituting for λ1 from Equation (6.43) gives

1 − λ2
1 = −γ2

2
− γ

√(
γ

2

)2

+ 1. (6.48)

For small values of γ, (1 − λ2
1) + γ2 ≈ −γ which upon substitution into

Equation (6.47) yields n1
1 = n2

1 from which the unit principal direction n1

is determined to be

n1 =

[ 1√
2

1√
2

]
. (6.49)

Orthogonality then gives

n2 =

[− 1√
2

1√
2

]
(6.50)
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and using Equations (6.44), (6.45), and (6.46) yields

σ = 2μ sinh−1
(

γ

2

)
1
2

[
1

1

]
⊗ [

1 1
]

−2μ sinh−1
(

γ

2

)
1
2

[
−1

1

]
⊗ [−1 1

]

= 2μ sinh−1
(

γ

2

)[
0 1
1 0

]
. (6.51)

For larger values of γ the calculation proceeds in a similar fashion, but the
algebra becomes more laborious.

EXAMPLE 6.6: Textbook Exercise 6.5

A general type of incompressible hyperelastic material proposed by Ogden
is defined by the following strain energy function:

Ψ =
N∑

p=1

μp

αp

(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)
.

Derive the homogeneous counterpart of this functional. Obtain expres-
sions for the principal components of the deviatoric stresses and elasticity
tensor.

Solution

Recalling the discussion on textbook page 168, the homogeneous counter-
part of Ψ is obtained by replacing λα by

λ̂α = J−1/3λα ; J = λ1λ2λ3 (6.52)

to give

Ψ̂ =
N∑

p=1

μp

αp

(
λ̂

αp

1 + λ̂
αp

2 + λ̂
αp

3 − 3
)

=
N∑

p=1

μp

αp

[
J−αp /3(λαp

1 + λ
αp

2 + λ
αp

3 − 3
)]

. (6.53)
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Employing Equation (6.12) the principal Cauchy stresses are found to be

σ′
β =

1
J

∂Ψ̂
∂ lnλβ

=
λβ

J

∂Ψ̂
∂λβ

, (6.54)

where β is used to differentiate the principal direction subscript from the
material coefficient superscript αp.

Differentiating Equation (6.53) gives

σ′
β =

λβ

J

⎡
⎣ N∑

p=1

J−αp /3 μp

αp
αp λ

(αp −1)
β

− μp

αp

αp

3
J (−αp /3−1) J

λβ

(
λ

αp

1 + λ
αp

2 + λ
αp

3
)]

=
1
J

⎡
⎣ N∑

p=1

J−αp /3 μp λαp
p − J−αp /3 μp

3
(
λ

αp

1 + λ
αp

2 + λ
αp

3
)⎤⎦

=
1
J

N∑
p=1

μp

[
λ̂

αp

β − 1
3
(
λ̂

αp

1 + λ̂
αp

2 + λ̂
αp

3
)]

. (6.55)

It is simple to show that σ′ meets the requirement that trσ′ = σ′
1 + σ′

2 +
σ′

3 = 0, see textbook page 151.
The coefficients of the spatial elasticity tensor given in the first term of

textbook Equation (6.90) are obtained by differentiation as

1
J

∂2Ψ̂
∂ lnλβ∂ ln λγ

=
1
J

∂Jσ′
β

∂ lnλγ
=

1
J

λγ

∂Jσ′
β

∂λγ

=
λγ

J

∂

∂λγ

⎡
⎣ N∑

p=1

J−αp /3 μp

(
λ

αp

β − 1
3

N∑
δ=1

λ
αp

δ

)⎤⎦
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=
λγ

J

⎡
⎣ N∑

p=1

J−αp /3 μp

(
λ(αp −1)

γ αp − 1
3

αpλ
(αp −1)
γ

)

−
N∑

p=1

αp

3
J (−αp /3−1) J

λγ
μp

(
λ

αp

β − 1
3

N∑
δ=1

λ
αp

δ

)⎤⎦

=
1
J

⎡
⎣ N∑

p=1

αp μp

(
λ̂αp

γ − 1
3

λ̂
αp

β − 1
3

λ̂αp
γ +

1
9

N∑
δ=1

λ̂
αp

δ

)⎤⎦ . (6.56)



 

C H A P T E R S E V E N

LARGE ELASTO-PLASTIC
DEFORMATIONS

This chapter considers a few examples which build on the elasto-plastic
formulations given in the corresponding textbook chapter.

Equation summary

Deformation gradient in principal directions [4.43]

F =
3∑

α=1

λα nα ⊗ Nα. (7.1)

Multiplicative decomposition [7.2]

F = FeFp. (7.2)

Derivative of left Cauchy–Green tensor [7.12]

ḃe =
d

dt
be (F (t),Cp(t)) =

dbe

dt

∣∣∣∣
Cp = const

+
dbe

dt

∣∣∣∣
F= const

. (7.3)

Decomposition of total rate of work [7.13]

ẇ = ẇe + ẇp. (7.4)

Elastic velocity gradient [7.16]

le = ḞeF
−1
e . (7.5)

95
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Flow rule [7.22]

lp = −1
2

dbe

dt

∣∣∣∣
F= const

b−1
e = γ̇

∂f(τ , ε̄p)
∂τ

. (7.6)

Total work rate per unit initial volume [7.23]

τ : l = τ : le + τ : lp. (7.7)

Flow rule in principal directions [7.39]

− lp,αα =
dεe,α

dt

∣∣∣∣
F= const

= − γ̇
∂f(ταα, ε̄p)

∂ταα
; εe,α = lnλe,α. (7.8)

EXAMPLE 7.1: Textbook Exercise 7.1

Using the multiplicative decomposition F = F eF p and the expressions
l = Ḟ F−1 and le = Ḟ eF

−1
e , show that the plastic rate of deformation lp

can be obtained as

lp = F eḞ pF
−1
p F−1

e .

Solution

First note from Equation (7.7) that

τ : lp = τ : l − τ : le, (7.9)

from which it is evident that lp = l − le. Using Equations (4.20), (7.2), and
(7.5),

lp = l − le

= Ḟ F−1 − Ḟ eF
−1
e

= (Ḟ eF p + F eḞ p)(F−1
p F−1

e ) − Ḟ eF
−1
e

= Ḟ eF
−1
e + F eḞ pF

−1
p F−1

e − Ḟ eF
−1
e

= F eḞ pF
−1
p F−1

e . (7.10)
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EXAMPLE 7.2: Textbook Exercise 7.2

Starting from the expression F e = F e(F , F p) and using a decomposition
similar to that shown in Equation (7.3), show that

lp = − dF e

dt

∣∣∣∣
F= const

F−1
e .

Solution

Observing that F e = FF−1
p gives

dF e

dt
=

dF e

dt

∣∣∣∣
F p = const

+
dF e

dt

∣∣∣∣
F= const

= Ḟ F−1
p +

dF e

dt

∣∣∣∣
F= const

. (7.11)

Hence,

dF e

dt

∣∣∣∣
F= const

F−1
e = Ḟ eF

−1
e − Ḟ F−1

p F−1
e

= le − l

= −lp. (7.12)

EXAMPLE 7.3: Textbook Exercise 7.3

Use Equation (7.12) to derive the flow rule in principal directions following
a procedure similar to that described in Section 7.5.

Solution

From Equation (7.6),

lp = γ̇
∂f(τ , ε̄p)

∂τ
, (7.13)

therefore

− dF e

dt

∣∣∣∣
F= const

F−1
e = γ̇

∂f(τ , ε̄p)
∂τ

. (7.14)
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In principal directions the elastic component of the deformation gradient
can be expressed as

F e =
3∑

α=1

λe,α nα ⊗ np
α; F−1

e =
3∑

α=1

λ−1
e,α np

α ⊗ nα, (7.15)

where np
α represents the principal directions in the plastic reference state

(see, for comparison, Equation (7.1)). Consequently,

− lp =
dF e

dt

∣∣∣∣
F

F−1
e (7.16)

=
3∑

α=1

dλe,α

dt

∣∣∣∣
F

λ−1
e,α nα ⊗ nα

+
3∑

α=1

λe,α λ−1
e,α

dnα

dt

∣∣∣∣
F

⊗ nα

+
3∑

α,β=1

λe,α λ−1
e,β

(
dnp

α

dt

∣∣∣∣
F

· np
β

)
nα ⊗ nβ

=
3∑

α=1

dλe,α

dt

∣∣∣∣
F

λ−1
e,α nα ⊗ nα

+
3∑

α,β=1
α �=β

(
dnβ

dt

∣∣∣∣
F

· nα +
dnp

α

dt

∣∣∣∣
F

· np
β

(λe,α

λe,β

))
nα ⊗ nβ .

(7.17)

Using again the symmetry arguments deployed in book Section 7.5 between
Equations (7.35) and (7.37) leads to

lp = −
3∑

α=1

dλe,α

dt

∣∣∣∣
F

λ−1
e,α nα ⊗ nα

= −
3∑

α=1

d lnλe,α

dt

∣∣∣∣
F

nα ⊗ nα. (7.18)
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Or

lp,αα = − dεe,α

dt

∣∣∣∣
F= const

= γ̇
∂f(ταα, ε̄p)

∂ταα
, (7.19)

which coincides with Equation (7.8).

EXAMPLE 7.4: Textbook Exercise 7.4

Consider a material in which the internal elastic energy is expressed as
Ψ(C, Cp). Show that the plastic dissipation rate can be expressed as

ẇp = − ∂Ψ
∂Cp

: Ċp.

Starting from this expression and using the principle of maximum plastic
dissipation, show that if the yield surface is defined in terms of C and Cp

by f(C, Cp) ≤ 0 then the flow rule becomes

∂2Ψ
∂C∂CP

: Ċp = −γ
∂f

∂C
.

Solution

From the definition given by Equation (7.4),

ẇp = ẇ − ẇe

= 1
2S : Ċ − Ψ̇, (7.20)

where S = 2 ∂Ψ
∂C , and Ψ̇ can be found as

Ψ̇ =
∂Ψ
∂C

: Ċ +
∂Ψ
∂Cp

: Ċp. (7.21)

Combining these equations gives

ẇp =
1
2

2
∂Ψ
∂C

: Ċ − ∂Ψ
∂C

: Ċ − ∂Ψ
∂Cp

: Ċp

= − ∂Ψ
∂Cp

: Ċp. (7.22)
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Maximizing the plastic dissipation subject to the condition f(C, Cp) ≤ 0
is achieved by using a Lagrange multiplier γ to define the functional

Π = ẇp(C, Cp) + γf(C, Cp). (7.23)

The stationary conditions of this functional imply

∂Ψ
∂C∂Cp

: Ċp = −γ
∂f

∂C
. (7.24)



 

C H A P T E R E I G H T

LINEARIZED EQUILIBRIUM
EQUATIONS

This chapter presents various examples involving linearization of terms
in the virtual work expression of equilibrium. Such linearization, which
employs the concept of the directional derivative, is central to the formu-
lation of the Newton–Raphson process necessary for achieving an even-
tual solution to the discretized nonlinear equilibrium equations. A final
example considers the linearization of the six-field Hu–Washizu variational
principle.

Equation summary

Directional derivative of the deformation gradient tensor [4.70]

DF [u] =
∂u(X)

∂X
= ∇0u. (8.1)

Internal virtual work in terms of first Piola–Kirchhoff stress [5.33]

δWint(φ, δv) =
∫

V
P : δḞ dV. (8.2)

Condition on the deviatoric component of the first Piola–Kirchhoff stress
tensor [5.51b]

P ′ : F = 0. (8.3)

101
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First Piola–Kirchhoff stress tensor as a function of an elastic potential
[6.5]

P (F (X),X) =
∂Ψ(F (X),X)

∂F
. (8.4)

Virtual deformation gradient rate [8.7]

δḞ =
∂δv
∂X

= ∇0δv. (8.5)

Surface normal vector [8.19]

n =
∂x
∂ξ ×∂x

∂η∥∥∥∂x
∂ξ ×∂x

∂η

∥∥∥ ; da =
∥∥∥∥∂x

∂ξ
×∂x

∂η

∥∥∥∥ dξdη, (8.6)

Various forms of the directional derivative of the virtual external work
pressure component [8.20]

δWp
ext(φ, δv) =

∫
Aξ

pδv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη. (8.7)

Directional derivative of the virtual external work pressure component
[8.21]

DδWp
ext(φ, δv)[u] =

∫
Aξ

p

[
∂x

∂ξ
·
(

∂u

∂η
×δv

)

− ∂x

∂η
·
(

∂u

∂ξ
×δv

)]
dξdη. (8.8)

Directional derivative of the virtual external work pressure component (8.21
rewritten) [8.22]

DδWp
ext(φ, δv)[u] =

∫
Aξ

p

[
∂x

∂ξ
·
(

∂δv
∂η

×u

)

− ∂x

∂η
·
(

∂δv
∂ξ

×u

)]
dξdη

+
∮

∂Aξ

p(u×δv) ·
(

νη
∂x

∂ξ
− νξ

∂x

∂η

)
dl.

ν = [νξ, νη ]T vector normal to ∂Aξ. (8.9)
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Directional derivative of the virtual external work pressure component for
a closed boundary [8.23]

DδWp
ext(φ, δv)[u] =

1
2

∫
Aξ

p
∂x

∂ξ
·
[(

∂u

∂η
×δv

)
+
(

∂δv
∂η

×u

)]
dξdη

− 1
2

∫
Aξ

p
∂x

∂η
·
[(

∂u

∂ξ
×δv

)

+
(

∂δv
∂ξ

×u

)]
dξdη. (8.10)

Stationary condition of the perturbed Lagrangian functional employed in
the Penalty Method for Incompressibility [8.41]

DΠP (φ, p)[δp] =
∫

V
δp

[
(J − 1) − p

κ

]
dV = 0. (8.11)

Mean pressure from Mean Dilatation Procedure [8.52]

p(J̄) = κ

(
v − V

V

)
. (8.12)

EXAMPLE 8.1: Textbook Exercise 8.1

Show that the linearized internal virtual work can also be expressed
as

DδW (φ, δv)[u] =
∫

V
(∇0δv) : A : (∇0u) dV ; A =

∂P

∂F
=

∂2Ψ
∂F ∂F

,

where P is the first Piola–Kirchhoff tensor.

Solution

Taking the directional derivative of Equation (8.2) in the direction of
an incremental change in displacement u and using Equation (8.5)
gives

DδWint(φ, δv)[u] =
∫

V
DP [u] : ∇0δv dV, (8.13)

where it is noted that δv is not a function of u.
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Observing from Equation (8.4) that P is a function of F and recalling from
Equation (8.1) that DF [u] = ∇0u gives

DP [u] =
∂P

∂F
: DF [u]

=
∂2Φ

∂F ∂F
: DF [u]

= A : ∇0u. (8.14)

Substituting into Equation (8.13) yields

DδWint(φ, δv)[u] =
∫

V
(∇0δv) : A : (∇0u) dV. (8.15)

EXAMPLE 8.2: Textbook Exercise 8.2

Show that for the case of uniform pressure over an enclosed fixed boundary,
the external virtual work can be derived from an associated potential as
δWp

ext(φ, δv) = DΠp
ext(φ)[δv], where

Πp
ext(φ) =

1
3

∫
a
p x · n da.

Explain the physical significance of this integral.

Solution

From Equation (8.6) and noting Figure 8.1, the external pressure potential
becomes

Πp
ext(φ) =

1
3

∫
Aξ

p x ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη. (8.16)

Taking the directional derivative of Πp
ext(φ) in the direction of a virtual

velocity δv gives

DΠp
ext(φ)[δv] =

1
3

∫
Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

+
1
3

∫
Aξ

p x ·
(

∂δv
∂ξ

×∂x

∂η

)
dξdη

+
1
3

∫
Aξ

p x ·
(

∂x

∂ξ
×∂δv

∂η

)
dξdη. (8.17)
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∂ ∂
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FIGURE 8.1 Uniform surface pressure

It is now possible to show that both the second and third terms in the above
equation are equal to the first term for the case of an enclosed volume under
uniform pressure. For example,∫

Aξ

p x ·
(

∂δv
∂ξ

×∂x

∂η

)
dξdη = p

∫
Aξ

∂δv
∂ξ

·
(

∂x

∂η
×x

)
dξdη. (8.18)

Using the integral theorems of textbook section 2.4.2 gives∫
Aξ

p x ·
(

∂δv
∂ξ

×∂x

∂η

)
dξdη = p

∫
Aξ

∂

∂ξ

[
δv ·
(

∂x

∂η
×x

)]
dξdη

− p

∫
Aξ

δv ·
(

∂x

∂η
×∂x

∂ξ

)
dξdη

− p

∫
Aξ

δv ·
(

∂2x

∂η∂ξ
×x

)
dξdη

= p

∮
∂Aξ

δv ·
(

∂x

∂η
×x

)
dη

+
∫

Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

−
∫

Aξ

p δv ·
(

∂2x

∂η∂ξ
×x

)
dξdη.

(8.19)
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Since δv = 0 on the fixed boundary of the enclosed volume, we have∫
Aξ

p x ·
(

∂δv
∂ξ

×∂x

∂η

)
dξdη =

∫
Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

−
∫

Aξ

p δv ·
(

∂2x

∂η∂ξ
×x

)
dξdη.

(8.20)

Similarly, the third term in Equation (8.17) is∫
Aξ

p x ·
(

∂x

∂ξ
×∂δv

∂η

)
dξdη =

∫
Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

+
∫

Aξ

p δv ·
(

∂2x

∂ξ∂η
×x

)
dξdη.

(8.21)

Consequently,

DΠp
ext(φ)[δv] =

1
3

∫
Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

+
1
3

∫
Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

+
1
3

∫
Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

=
∫

Aξ

p δv ·
(

∂x

∂ξ
×∂x

∂η

)
dξdη

=
∫

a
p δv · n da

= δWp
ext(φ, δv). (8.22)

The term 1
3

∫
a p x · n da represents the energy stored in the gas contained

by the surface at pressure p.

EXAMPLE 8.3: Textbook Exercise 8.3

Prove that for two-dimensional applications, Equation (8.10) becomes

DδWp
ext(φ, δv)[u] =

1
2

∫
Lη

pk ·
[(

∂u

∂η
×δv

)
+
(

∂δv
∂η

×u

)]
dη,
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FIGURE 8.2 Example 8.3: Two-dimensional pressure linearization

where k is a unit vector normal to the two-dimensional plane and η is a
parameter along the line Lη where the pressure p is applied.

Solution

Figure 8.2 is the two-dimensional equivalent of textbook Figure 8.1. The
unit vector k in the z-direction is perpendicular to the x–y plane. The
position vector x(η) is parameterized in terms of the one-dimensional
coordinate η which enables the normal n to be found to be

n =
k×∂x

∂η∥∥∥∂x
∂η

∥∥∥ . (8.23)

For the two-dimensional case Equation (8.7) becomes

δWp
ext(φ, δv) =

∫
Lη

p δv ·
(

k×∂x

∂η

)
dη. (8.24)

Linearizing with respect to an increment in displacements u gives

DδWp
ext(φ, δv)[u] =

∫
Lη

p δv ·
(

k×∂u

∂η

)
dη

=
∫

Lη

p k ·
(

∂u

∂η
×δv

)
dη. (8.25)

For enclosed boundaries with uniform pressure where δv and u vanish
at the edges, we can evaluate the right-hand side of Equation (8.25) as
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follows:∫
Lη

p k ·
(

∂δv
∂η

×u

)
dη =

∫
Lη

p k · ∂

∂η

(
δv×u

)
dη

−
∫

Lη

p k ·
(

δv×∂u

∂η

)
dη

= p k · (δv×u)
∣∣∣∣
B

A

+
∫

Lη

p k ·
(

∂u

∂η
×δv

)
dη

=
∫

Lη

p k ·
(

∂u

∂η
×δv

)
dη, (8.26)

where A and B are the left and right boundary points of Lη , where both u

and δv are zero. Hence

DδWp
ext(φ, δv)[u] =

1
2

∫
Lη

p k ·
[(

∂u

∂η
×δv

)
+
(

∂δv
∂η

×u

)]
dη.

(8.27)

EXAMPLE 8.4: Textbook Exercise 8.4

Prove that by using a different cyclic permutation than that used to derive
Equation (8.9), the following alternative form of Equation (8.10) can be
found for the case of an enclosed fixed boundary with uniform surface
pressure:

DδWp
ext(φ, δv)[u]=

∫
Aξ

p x ·
[(

∂δv
∂ξ

×∂u

∂η

)
−
(

∂δv
∂η

×∂u

∂ξ

)]
dξdη.

(8.28)

Solution

Starting from Equation (8.8), the process is similar to Example 8.2. Con-
sider, for instance, the first term in Equation (8.8) (eqn. continues on
next page):∫

Aξ

p
∂x

∂ξ
·
(

∂u

∂η
×δv

)
dξdη =

∫
Aξ

p
∂

∂ξ

[
x ·
(

∂u

∂η
×δv

)]
dξdη

−
∫

Aξ

p x ·
(

∂u

∂η
×∂δv

∂ξ

)
dξdη



 

L I N E A R I Z E D E Q U I L I B R I U M E Q U A T I O N S 109

−
∫

Aξ

p x ·
(

∂2u

∂ξ∂η
×δv

)
dξdη

=
∫

Aξ

p x ·
(

∂δv
∂ξ

×∂u

∂η

)
dξdη

−
∫

Aξ

p x ·
(

∂2u

∂ξ∂η
×δv

)
dξdη.

(8.29)

Similarly,∫
Aξ

p
∂x

∂η
·
(

∂u

∂ξ
×δv

)
dξdη =

∫
Aξ

p x ·
(

∂δv
∂η

×∂u

∂ξ

)
dξdη

−
∫

Aξ

p x ·
(

∂2u

∂ξ∂η
×δv

)
dξdη.

(8.30)

Recalling Equation (8.8), DδWp
ext(φ, δv)[u] is found by subtracting Equa-

tion (8.30) from Equation (8.29) to give

DδWp
ext(φ, δv)[u]=

∫
Aξ

p x ·
[(

∂δv
∂ξ

×∂u

∂η

)
−
(

∂δv
∂η

×∂u

∂ξ

)]
dξdη.

(8.31)

EXAMPLE 8.5: Textbook Exercise 8.5

Prove that by assuming a constant pressure interpolation over the integration
volume in Equation (8.11), a constant pressure technique equivalent to the
mean dilatation method is obtained.

Solution

If p and δp are constant fields in textbook Equation (8.41) over the integra-
tion volume, then∫

V

[
(J − 1) − p

κ

]
dV = 0, (8.32)

which gives

p

κ

∫
V

dV =
∫

V
(J − 1)dV

=
∫

V
JdV −

∫
V

dV. (8.33)



 

110 L I N E A R I Z E D E Q U I L I B R I U M E Q U A T I O N S

Noting that
∫
V JdV = v and that

∫
V dV = V gives

p

κ
V = v − V or p = κ

v − V

V
, (8.34)

which corresponds to the mean dilatation technique expression for the
pressure given in textbook Equation (8.12).

EXAMPLE 8.6: Textbook Exercise 8.6

A six-field Hu–Washizu type of variational principle with independent
volumetric and deviatoric variables is given as

ΠHW(φ, J̄ ,F , p, P ′, γ) =
∫

V
Ψ̂(C) dV +

∫
V
U(J̄) dV

+
∫

V
p(J−J̄) dV +

∫
V

P ′ : (∇0φ−F ) dV

+
∫

V
γ P ′ : F dV − Πext(φ),

where C = F TF , J = det(∇0φ), and P ′ denotes the deviatoric compo-
nent of the first Piola–Kirchhoff stress tensor. Find the stationary conditions
with respect to each variable. Explain the need to introduce the Lagrange
multiplier γ. Derive the formulation that results from assuming that all the
fields except for the motion are constant over the integration volume.1

Solution

The linearization with respect to φ in the direction δv gives the Principle of
Virtual Work in the usual fashion as

DΠHW[δv] =
∫

V
P ′ : ∇0δv dV +

∫
V
pDJ [δv] dV − DΠext[δv]

=
∫

V
P ′ : ∇0δv dV +

∫
V
pJdiv δv dV − DΠext[δv]. (8.35)

Note, however, that the deviatoric and volumetric components of the internal
energy are stated separately (see below Equations (8.40)).

1 This exercise relates to J. Bonet and P. Bhargava, “A uniform deformation hexahedron element with
hourglass control,” International Journal for Numerical Methods in Engineering 36(16), p. 2809
(1995).



 

L I N E A R I Z E D E Q U I L I B R I U M E Q U A T I O N S 111

Linearization with respect to P ′ and p now gives

DΠHW[δP ′] =
∫

V
δP ′ : [∇0φ − (1 − γ)F ] dV = 0, (8.36)

DΠHW[δp] =
∫

V
δp(J − J̄) dV = 0, (8.37)

which establish relationships between ∇0φ and F and between J =
det[∇0φ] and J̄ . For instance, taking P ′ and p constant over the inte-
gration volume as in textbook Section 8.6.5 gives

J̄ =
1
V

∫
V
J dV =

v

V
, (8.38)

F = (1 − γ)−1 1
V

∫
V
∇0φ dV = (1 − γ)−1F . (8.39)

The derivative in the direction of δF and δJ̄ gives the deviatoric and
volumetric constitutive equations as

DΠHW[δF ] =
∫

V
δF :

[
∂Ψ̂
∂F

− (1 − γ)P ′
]

dV = 0, (8.40a)

DΠHW[δJ̄ ] =
∫

V
δJ̄

(
dv

dJ̄
− p

)
dV = 0. (8.40b)

For constant fields over the integration volume these yield

P ′ = (1 − γ)−1 ∂Ψ̂
∂F

∣∣∣∣
F=(1−γ)−1 F

, (8.41)

p =
dv

dJ̄

∣∣∣∣
J̄=v/V

. (8.42)

The final term leads to the condition

DΠHW[δγ] =
∫

V
δγP ′ : F dV = 0, (8.43)

which enforces the deviatoric condition on P ′ (see textbook Equation (8.3)).
For constant fields this will lead to

P ′ : F = 0, (8.44)
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which, combined with the above Equation (8.41) for P ′, would enable the
evaluation of γ. However, if Ψ̂ is defined so that it is homogeneous of order
0, then its derivative is homogeneous of order −1 and the above equation
for P ′ becomes

P ′ = (1 − γ)−1 ∂Ψ̂
∂F

∣∣∣∣
F=(1−γ)−1 F

=
∂Ψ̂
∂F

∣∣∣∣
F

. (8.45)

In other words, P ′ is independent of the volumetric component of F . For
consistency one can set F such that

det F = J̄ , (8.46)

by setting

F = J̄1/3[det F ]−1/3F . (8.47)



 

C H A P T E R N I N E

DISCRETIZATION AND
SOLUTION

In this chapter the formulations presented in the previous chapter are finally
realized in terms of a solution process based on the finite element method.
Examples are given of the calculation of the deformation gradient, stresses,
equivalent nodal forces, and tangent matrix components.

Equation summary

Spatial elasticity tensor [6.14]

c = J−1φ∗[C]

=
3∑

i , j , k , l = 1
I , J , K , L = 1

J−1FiIFjJFkKFlL CIJKL ei ⊗ ej ⊗ ek ⊗ el. (9.1)

Compressible neo-Hookean material second Piola–Kirchhoff stress tensor
[6.28]

S = μ(I − C−1) + λ(lnJ)C−1. (9.2)

Compressible neo-Hookean material Cauchy stress tensor [6.29]

σ =
μ

J
(b − I) +

λ

J
(lnJ)I. (9.3)

113
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Compressible neo-Hookean material elasticity tensor [6.40]

c ijkl = λ′δijδkl + μ′ (δikδjl + δilδjk), (9.4)

where the effective coefficients λ′ and μ′ are [6.41]

λ′ =
λ

J
; μ′ =

μ − λ ln J

J
. (9.5)

Spatial elasticity tensor symmetries [6.42]

c ijkl = c klij = c jikl = c ijlk. (9.6)

Surface pressure component of the external virtual work [8.18]

δWp
ext(φ, δv) =

∫
a
pn · δv da. (9.7)

Deformation gradient tensor [9.5]

F =
n∑

a=1

xa ⊗ ∇0Na. (9.8)

Shape function and material coordinate derivatives [9.6a,b]

∂Na

∂X
=
(

∂X

∂ξ

)−T ∂Na

∂ξ
;

∂X

∂ξ
=

n∑
a=1

Xa ⊗ ∇ξNa. (9.9)

Equivalent nodal force [9.15b]

T (e)
a =

∫
v( e )

σ∇Na dv =
∫

v( e )

σ
∂Na

∂x
dv. (9.10)

Constitutive component of the tangent stiffness matrix [9.35]

[K(e)
c,ab]ij =

∫
v( e )

3∑
k,l=1

∂Na

∂xk
c ikjl

∂Nb

∂xl
dv ; i, j = 1, 2, 3. (9.11)

Initial stress component of the tangent stiffness matrix [9.44b]

K
(e)
σ,ab =

∫
v( e )

(∇Na · σ∇Nb)I dv. (9.12)

EXAMPLE 9.1

A three-noded plane strain linear triangle finite element of unit thickness is
deformed as shown in Figure 9.1. The material is defined by a compressible
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φ

,X x
1 1

X

x

( , )1 0 0

( , )3 0 3

( , )1 2 3

( , )3 10 9

( , )2 10 3

,X x2 2

X
( , )2 4 0

FIGURE 9.1 Three-node linear triangle

neo-Hookean material with λ = 2 and μ = 3, see Equation (9.3). This
example has the same geometry as textbook Example 9.1.

Calculate the the following items:
(a) deformation gradient tensor F ,
(b) Cauchy–Green tensors C and b,
(c) second Piola–Kirchhoff and Cauchy stress tensors, S and σ respectively,
(d) vector of internal nodal, T a forces for each node a,
(e) component of the tangent stiffness, K23 connecting nodes 2 − 3.

Solution

(a) The material and spatial coordinates, Xa and xa, a = 1, 2, 3 respec-
tively, are listed as

X1 =
[

0
0

]
; X2 =

[
4
0

]
; X3 =

[
0
3

]
, (9.13a)

x1 =
[

2
3

]
; x2 =

[
10
3

]
; x3 =

[
10
9

]
. (9.13b)

The relevant shape functions and gradients with respect to the non-
dimensional isoparametric coordinates are

N1(ξ1, ξ2) = 1 − ξ1 − ξ2, (9.14a)

N2(ξ1, ξ2) = ξ1, (9.14b)

N3(ξ1, ξ2) = ξ2. (9.14c)
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[
∂N1/∂ξ1

∂N1/∂ξ2

]
=
[−1
−1

]
;

[
∂N2/∂ξ1

∂N2/∂ξ2

]
=
[

1
0

]
, (9.15a)

[
∂N3/∂ξ1

∂N3/∂ξ2

]
=
[

0
1

]
. (9.15b)

From Equation (9.9) the gradient of the material coordinates with respect
to the nondimensional coordinates is found as

∂X

∂ξ
=

[
0

0

]
⊗
[
−1

−1

]
+

[
4

0

]
⊗
[

1

0

]
+

[
0

3

]
⊗
[

0

1

]

=
[
4 0
0 3

]
. (9.16)

Similarly, with respect to the spatial coordinates

∂x

∂ξ
=

[
2

3

]
⊗
[
−1

−1

]
+

[
10

3

]
⊗
[

1

0

]
+

[
10

9

]
⊗
[

0

1

]

=
[
8 8
0 6

]
. (9.17)

Prior to calculating the derivatives of the shape functions with respect
to the material and spatial coordinates, the transpose of the inverse of
Equations (9.16) and (9.17) are simply(

∂X

∂ξ

)−T

=

[
1
4 0

0 1
3

]
;
(

∂x

∂ξ

)−T

=

[
1
8 0

− 1
6

1
6

]
. (9.18)

Using Equation (9.9), the gradients of the shape functions with respect
to the material and spatial coordinates are now found, for example for
node 1, as

∂N1

∂X
=
(

∂X

∂ξ

)−T ∂N1

∂ξ
=

[
1
4 0

0 1
3

][
−1

−1

]
=

[
− 1

4

− 1
3

]
, (9.19a)

∂N1

∂x
=
(

∂x

∂ξ

)−T ∂N1

∂ξ
=

[
1
8 0

− 1
6

1
6

][
−1

−1

]
=

[
− 1

8

0

]
. (9.19b)
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The remaining gradients corresponding to Equation (9.19) for nodes 1 and
2 are

∂N2

∂X
=

[
1
4

0

]
;

∂N3

∂X
=

[
0
1
3

]
, (9.20a)

∂N2

∂x
=

[
1
8

− 1
6

]
;

∂N3

∂x
=

[
0
1
6

]
. (9.20b)

The deformation gradient F can now be found using Equation (9.8) to yield

F =
n∑

a=1

xa ⊗ ∇0Na (9.21a)

=

[
2

3

]
⊗
[
−1

4

− 1
3

]
+

[
10

3

]
⊗
[

1
4

0

]
+

[
10

9

]
⊗
[

0
1
3

]

=

[
−1

2 − 2
3

− 3
4 −1

]
+

[
5
2 0
3
4 0

]
+

[
0 10

3

0 3

]
(9.21b)

=

[
2 8

3

0 2

]
. (9.21c)

(b) The right Cauchy–Green tensor is now easily found using Equation (4.4)
as

C = F TF =

[
2 0
8
3 2

][
2 8

3

0 2

]
=

[
4 16

3
16
3

100
9

]
, (9.22)

and the left Cauchy–Green tensor, see Equation (4.39), is

b = FF T =

[
2 8

3

0 2

][
2 0
8
3 2

]
=

[
100
9

16
3

16
3 4

]
. (9.23)

(c) Recalling that the Jacobian J = det F = 4, λ = 2, and μ = 3, the
Cauchy stress tensor can be found from Equation (9.3) as

σ =
3
4

[100
9 − 1 16

3
16
3 4 − 1

]
+

2
4

ln 4

[
1 0

0 1

]
=

[
8.2765 4

4 2.9431

]
.

(9.24)
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Using, Equation (9.2), the second Piola–Kirchhoff stress S is obtained
as

S = JF−1σF T = μ(I − C−1) + λ(ln J)C−1, (9.25)

where

C−1 = F−1F−T =

[
5
36 − 1

3

− 1
3

1
4

]
. (9.26)

A simple substitution of Equation (9.26) in (9.25) yields

S = 3

[
1 − 5

36 − 1
3

− 1
3 1 − 1

4

]
+ 2 ln 4

[
5
36 − 1

3

− 1
3

1
4

]

=

[
2.8421 0.0758

0.0758 2.9431

]
. (9.27)

(d) The equivalent nodal forces can be found using Equations (9.10), (9.24),
and (9.19, 9.20). Conveniently for the linear triangular element, the Cauchy
stress and shape function derivatives are constant over the element which,
for example for node 1, enables the equivalent nodal force T

(e)
1 at node 1

to be found as

T
(e)
1 =

∫
v
σ

∂N1

∂x
dv = 24

(
σ

∂N1

∂x

)

= 24

[
8.2765 4

4 2.9431

][
− 1

8

0

]
=

[
−24.8294

−12

]
, (9.28)

where the spatial volume of the element is 24 × 1.
In a similar manner, the remaining equivalent nodal forces are calculated as

T
(e)
2 =

[
8.8294

0.2274

]
; T

(e)
3 =

[
16

11.7726

]
. (9.29)

Observe that the nodal forces are in equilibrium.
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(e) The initial stress component of the tangent stiffness is the easier calcu-
lation and is obtained from Equation (9.12) for nodes 2 − 3 as

K
(e)
σ,23 =

∫
v

(
∂N2

∂x
· σ

∂N3

∂x

)
I dv = v(e)

(
∂N2

∂x
· σ

∂N3

∂x

)
I (9.30a)

= 24

([
1
8

, −1
6

][8.2765 4

4 2.9431

][
0
1
6

])[
1 0

0 1

]
, (9.30b)

=

[
0.0379 0

0 0.0379

]
. (9.30c)

The calculation of the (two-dimensional) constitutive component of the tan-
gent stiffness matrix requires a temporary excursion into indicial notation.
From Equations (9.11)

[Kc,23]ij =
∫

v( e )

2∑
k,l=1

∂N2

∂xk
c ikjl

∂N3

∂xl
dv; i, j = 1, 2 (9.31a)

= v(e)
2∑

k,l=1

(
∂N2

∂xk

∂N3

∂xl
c ikjl

)
. (9.31b)

After substituting Equation (9.4) into Equation (9.31) it is convenient to
consider the λ′ and μ′ contributions within the summation separately to
give

2∑
k,l=1

∂N2

∂xk

∂N3

∂xl
λ′δikδjl = λ′∂N2

∂xi

∂N3

∂xj
, (9.32)

and

2∑
k,l=1

∂N2

∂xk

∂N3

∂xl
μ′ (δikδjl + δilδjk)

= μ′

⎡
⎣
⎛
⎝ 2∑

k,l=1

∂N2

∂xk

∂N3

∂xl

⎞
⎠ δij +

∂N3

∂xi

∂N2

∂xj

⎤
⎦ . (9.33)



 

120 D I S C R E T I Z A T I O N A N D S O L U T I O N

Substituting Equations (9.32) and (9.33) into Equation (9.31) and reverting
to direct notation yields

[Kc,23] =
[
λ′∂N2

∂x
⊗ ∂N3

∂x

]
v(e)

+ μ′
[(

∂N2

∂x
· ∂N3

∂x

)
I +

∂N3

∂x
⊗ ∂N2

∂x

]
v(e). (9.34)

Substituting numerical data gives

[Kc,23] = 24

[
2
4

[
1
8

− 1
6

]
⊗
[

0
1
6

]]

+24
(

(3 − 2 ln 4)
4

)[([
1
8

, −1
6

] [ 0
1
6

])[
1 0

0 1

]

+

[
0
1
6

]
⊗
[

1
8

− 1
6

] ]
(9.35)

=

[
−0.0379 0.2500

0.0284 −0.4091

]
. (9.36)

EXAMPLE 9.2: Textbook Exercise 9.1

Prove that the equivalent internal nodal forces can be expressed with respect
to the initial configuration as

T (e)
a =

∫
V ( e )

FS∇0Na dV

and then confirm this equation by recalculating the equivalent nodal forces
found in textbook Example 9.3.

Solution

From textbook Equation (9.10) the equivalent nodal force written with
respect to the spatial coordinates is

T (e)
a =

∫
v( e )

σ∇Na dv ; ∇Na =
(

∂Na

∂x1
,
∂Na

∂x2
,
∂Na

∂x3

)T

. (9.37)
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Recall that dv = JdV and σ = J−1FSF T and note the components of F

illustrated in textbook Example 4.2, page 100 (extended to 3 × 3), hence

T (e)
a =

∫
V ( e )

FSF T∇Na dV

=
∫

V ( e )

FS ∇0Na dV. (9.38)

From textbook Examples 9.1 the material shape function derivatives defor-
mation gradient (2 × 2) are

∂N1

∂X
= − 1

12

[
3
4

]
;

∂N2

∂X
=

1
12

[
3
0

]
;

∂N3

∂X
=

1
12

[
0
4

]
, (9.39a)

F =
1
3

[
6 8
0 6

]
; J = det F = 4. (9.39b)

To calculate the second Piola–Kirchhoff stress tensor S, given in Equa-
tion (9.2) by

S = μ(I − C−1) + λ(lnJ)C−1, (9.40)

requires the determination of the right Cauchy–Green tensor C, and its
inverse by

C = F TF =
1
9

⎡
⎣36 48 0

48 100 0
0 0 9

⎤
⎦ , (9.41a)

C−1 = F−1F−T =
1
36

⎡
⎣ 25 −12 0
−12 9 0

0 0 36

⎤
⎦ , (9.41b)

where the two-dimensional C has been extended to allow for plane strain
behavior.1

For μ = 3 and λ = 2, the second Piola–Kirchhoff stress tensor is

S ≈ 1
15

⎡
⎣40 0 0

0 45 0
0 0 48

⎤
⎦ . (9.42)

1 Observe that E = 1
2 (C − I); hence E33 = 0.
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For the initial configuration of the triangle shown in textbook Example 9.1,
the volume is 6t where t is the thickness. Considering node 1, the equivalent
nodal force is calculated to be

T
(e)
1 =

∫
V ( e )

FS ∇0N1 dV

= FS ∇0N1 V (e), (9.43)

which, considering only in, plane components of S, yields

T
(e)
1 = −

(
1

540

)[
6 8
0 6

] [
40 0
0 45

] [
3
4

]
6t

= −
[

24t

12t

]
. (9.44)

Similarly,

T
(e)
2 =

[
8t

0t

]
; T

(e)
3

[
16t

12t

]
. (9.45)

EXAMPLE 9.3: Textbook Exercise 9.2

Prove that the initial stress matrix can be expressed with respect to the initial
configuration as

K
(e)
σ,ab =

∫
V ( e )

(∇0Na · S∇0Nb)I dV

and then confirm this equation by recalculating the initial stress matrix
Kσ,12 found in textbook Example 9.5.

Solution

From textbook Equation (9.12) the components of initial stress matrix with
respect to the spatial configuration are

K
(e)
σ,ab =

∫
v( e )

(∇Na · σ∇Nb)I dv. (9.46)



 

D I S C R E T I Z A T I O N A N D S O L U T I O N 123

Recall that dv = JdV and σ = J−1FSF T . When substituted in the above
equation, these give

K
(e)
σ,ab =

∫
V ( e )

(∇Na · (FSF T)∇Nb

)
I dV

=
∫

V ( e )

(
(F T∇Na) · S(F T∇Nb)

)
I dV

=
∫

V ( e )

(∇0Na · S ∇0Nb)I dV. (9.47)

For the particular case of the 1, 2 component,

K
(e)
σ,12 =

∫
V ( e )

(∇0N1 · S ∇0N2)I dV

= (∇0N1 · S ∇0N2)I 6t

= − 1
12
[
3 4

]T 1
15

[
40 0
0 45

]
1
12

[
3
0

]
I 6t

=
[−1t 0

0 −1t

]
. (9.48)

EXAMPLE 9.4: Textbook Exercise 9.3

Show that the constitutive component of the tangent matrix can be expressed
at the initial configuration by

[
K

(e)
c,ab

]
ij

=
3∑

I,J,K,L=1

∫
V ( e )

FiI
∂Na

∂XJ
CIJKL

∂Nb

∂XK
FjL dV.

Solution

To conform to programming practice, this example will be re-couched to
take advantage of the symmetries enshrined in the constitutive tensors. From
Equation (9.11) the constitutive component of the tangent matrix relating
node a to node b in element (e) in the spatial configuration becomes[

K
(e)
c,ab

]
ij

=
∫

v( e )

∂Na

∂xk
cikjl

∂Nb

∂xl
dv, (9.49)
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ξ
∂
∂
x

ξ

v∂

n

e1

e2

e3

p

FIGURE 9.2 Two-dimensional pressure stiffness

where i, j = 1, 2, 3 and the symmetries in the spatial constitutive tensor
c given by Equation (9.6) have been employed. From Equation (9.1) the
spatial constitutive tensor cikjl is related to the corresponding Lagrangian
form CIJKL as

cijkl = J−1φ∗[CIJKL] = J−1FiIFjJFkKFlL CIJKL. (9.50)

Substituting Equation (9.50) into (9.49) and noting that dv = JdV yields[
K

(e)
c,ab

]
ij

=
∫

V ( e )

∂Na

∂xk
FiIFjJFkKFlL CIJKL

∂Nb

∂xl
dV

=
∫

V ( e )

FiI
∂Na

∂Xk
CIJKL

∂Nb

∂Xl
FjJ dV. (9.51)

EXAMPLE 9.5: Textbook Exercise 9.4

With the help of Example 8.2, derive a two-dimensional equation for the
external pressure component of the tangent matrix Kp for a line element
along an enclosed boundary of a two-dimensional body under uniform
pressure p.

Solution

Recall from Equation (9.52) the virtual work expression relating to the
traction force pn due to the uniform internal pressure p, see Figure 9.2, is

δWp
ext(φ, δv) =

∫
a
p n · δv da. (9.52)
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where n = (n1, n2)T and δv = (δv1, δv2)T . Adopting a similar approach
to that given in textbook Section 8.5.2, consider the boundary to be
an isoparametric line element. For the two-dimensional situation with
unit thickness, da becomes dl where dl is an elemental length on
the parameterized boundary ∂v (see Equation (8.5) and Figure 8.1);
consequently

n =
∂x
∂ξ ×e3∥∥∥∂x
∂ξ ×e3

∥∥∥ , dl =
∥∥∥∥∂x

∂ξ
×e3

∥∥∥∥dξ, (9.53)

where ∂x/∂ξ is the local tangent vector and e3 the unit base vector out-
ward normal to the plane. The virtual work expression can now be written
as

δWp
ext(φ, δv) =

∫
∂vξ

p δv ·
(

∂x

∂ ξ
×e3

)
dξ. (9.54)

Linearization of the above expression yields

DδWp
ext(φ, δv)[u] = D

(∫
∂vξ

p δv ·
(

∂x

∂ ξ
×e3

)
dξ

)
[u]

=
∫

∂vξ

p δv ·
(

∂u

∂ ξ
×e3

)
dξ

= −
∫

∂vξ

p δv ·
(

e3×∂u

∂ ξ

)
dξ

=
∫

∂vξ

p e3 ·
(

δv×∂u

∂ ξ

)
dξ, (9.55)

where cyclic permutation has been applied. Observe that the last expression
in the above equation is, in general, nonsymmetric as the exchange of δv and
u does not result in the same outcome. The term DδWp

ext(φ, δv)[u] gives the
change in the virtual work due to a change in the spatial configuration given
by u with the pressure being constant. After discretization this linearization
gives the change in the equilibrating forces under the same conditions.

In order to incorporate the requirement that the boundary is enclosed,
observe that∫

∂vξ

∂

∂ξ
(δv×u)dξ = 0. (9.56)
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Applying the scalar product of p e3 (which is not a function of ξ) to the
above expression and using the chain rule gives

∫
∂vξ

p e3 · ∂

∂ξ
(δv×u)dξ =

∫
∂vξ

p e3 ·
(

∂ δv
∂ ξ

×u

)
dξ

+
∫

∂vξ

p e3 ·
(

δv×∂u

∂ ξ

)
dξ

= 0. (9.57)

Hence the linearization given in Equation (9.55) can be rewritten as

∫
∂vξ

p e3 ·
(

δv×∂u

∂ ξ

)
dξ = −

∫
∂vξ

p e3 ·
(

∂ δv
∂ ξ

×u

)
dξ. (9.58)

A symmetric expression for the linearization can now be developed by
adding half of the left side of Equation (9.58) to half of the right side of
Equation (9.58) to give

DδWp
ext(φ, δv)[u] =

1
2

(∫
∂vξ

p e3 ·
(

δv×∂u

∂ ξ

)
dξ

)

−1
2

(∫
∂vξ

p e3 ·
(

∂ δv
∂ ξ

×u

)
dξ

)

=
1
2

(∫
∂vξ

p e3 ·
(

δv×∂u

∂ ξ

)
dξ

)

+
1
2

(∫
∂vξ

p e3 ·
(

u×∂ δv
∂ ξ

)
dξ

)
. (9.59)

Observe that in the above expression the interchange of δv and u in the sec-
ond equation leaves the expression unchanged, indicating that discretization
will yield a symmetric stiffness matrix. Written explicitly, the virtual work
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term is

DδWp
ext(φ, δv)[u] =

1
2

∫
∂vξ

p

(
δv1

∂u2

∂ ξ
− δv2

∂u1

∂ ξ

)
dξ

+
1
2

∫
∂vξ

p

(
u1

∂ δv2

∂ ξ
− u2

∂ δv1

∂ ξ

)
dξ. (9.60)

Applying spatial discretization yields

DδWp
ext(φNaδva)[Nbub]

=
1
2

∫
∂vξ

p

(
δva

1Na
∂Nb

∂ ξ
ub

2 − δva
2Na

∂Nb

∂ ξ
ub

1

)
dξ

+
1
2

∫
∂vξ

p

(
δva

2Na
∂Nb

∂ ξ
ub

1 − δva
1Na

∂Nb

∂ ξ
ub

2

)
dξ

= [δva
1 , δva

2]
[
K

(e)
p,ab

]
ij

[
ub

1
ub

2

]
, (9.61)

where

[
K

(e)
p,ab

]
ij

=

⎡
⎢⎢⎣

0
1
2

(
Na

∂Nb

∂ ξ
− Nb

∂Na

∂ ξ

)
1
2

(
Nb

∂Na

∂ ξ
− Na

∂Nb

∂ ξ

)
0

⎤
⎥⎥⎦ .

(9.62)

Interchanging nodes a and b reveals that

[
K

(e)
p,ab

]
ij

=
[
K

(e)
p,ba

]T
ij
. (9.63)

EXAMPLE 9.6: Textbook Exercise 9.5

Recalling the line search method discussed in textbook Section 9.6.2, show
that minimizing Π(η) = Π(xk + ηu) with respect to η gives the orthogo-
nality condition

R(η) = uTR(xk + ηu) = 0.
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Solution

Define a total potential energy function Π in terms of a single parameter η

as follows:

Π(η) = Π(xk + ηu). (9.64)

In order to obtain the minimum of the function Π(η) at iterative position xk

in the given direction u (the current iterative change in x), it must satisfy

dΠ
dη

= 0. (9.65)

Applying the chain rule yields

dΠ
dη

=

(
∂Π
∂x

∣∣∣∣
xk +ηu

)T
dx
dη

; x = xk + ηu

=
∂Π
∂x

∣∣∣∣
xk +ηu

· u

= 0. (9.66)

Recalling the discussion in textbook Section 8.6.1, observe that the partial
derivative in the above equation is equivalent to DΠ(x)[xk + ηu] which
equals the residual force R(xk + ηu). Consequently, minimizing Π(η)
gives

R(η) = uTR(xk + ηu) = 0. (9.67)
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