ArchiCAD
version 7.0

Step by Step Tutorial

by Thomas M. Simmons

US version

GRAPHISOFT®
BUDAPEST • MUNICH • SAN FRANCISCO • TOKYO • LONDON • MADRID • SAO PAULO • SANTIAGO DE CHILE
About the Author

Thomas M. Simmons
President
ARCHVISTA

The ArchiCAD Step by Step Tutorial was developed by ARCHVISTA and used with the ArchiCAD training course at the San Francisco Institute of Architects. This is the first edition of Step by Step produced for ArchiCAD 7.0.

The author, Thomas M. Simmons, spent seven years as an architect and served as the director of design technology for Esherick, Homsey, Dodge and Davis Architects, an award-winning and internationally acclaimed architecture firm, before starting his company, ARCHVISTA. While at EHDD Architects, he was instrumental in integrating and managing ArchiCAD on projects ranging from single-family houses, commercial buildings, libraries and aquariums.

Simmons received a Master of Architecture degree from the University of California, Berkeley, and a Bachelor of Environmental Design degree from Texas A & M University. He has been a speaker on a variety of subjects including Beginning to Advanced ArchiCAD, Architectural Multimedia, QuickTime VR and Architectural Visualization.

ARCHVISTA has produced several notable projects for the architectural and ArchiCAD markets including the award-winning Architectural Record, Record Houses CD-ROM - 1997 and 1998 and the award winning visualization of the American Hebrew Academy with Aaron Green Architects. Additionally, ARCHVISTA has produced two products for ArchiCAD: ProjectStart and ProjectResource, management and organizational utilities.
Introduction

Welcome to Step by Step

The *Step by Step Tutorial* for ArchiCAD 7.0 is designed as a 16- to 20-hour course that will guide you through a project. By the end of this course, you should have a basic understanding of ArchiCAD concepts, tools, drawing techniques and modeling. The steps highlight the implementation of a project, methods of design and the application of tools for construction documents.

The intention of this course is to offer a consistent and organized process for learning ArchiCAD based on an architectural project.

Each step guides you through the concept or technique to be learned, the information necessary to build the exercise, and what to do for that step. The steps also contain diagrams of Toolbox and dialogs that provide quick references to Tools used in that exercise.

Important Note on the Step Files

The *ArchiCAD Step by Step Tutorial* has been designed to introduce the program’s functionality to users who have purchased a commercial or educational license.

If you have purchased or been offered *Step by Step* for evaluation purposes, the *Step by Step CD-ROM* contains a demo version of ArchiCAD. While offering the full functionality of the software, this demo version contains security restrictions. For example, you cannot save files or create a team project. This means that you will not be able to do some of the exercises as described in the manual.
The Concept of a Virtual Building

Architectural software is evolving rapidly from an “automator” of two-dimensional drafting to a three-dimensional building simulator. As a result of this evolution, the architect’s ability to construct a “virtual building” on a desktop computer, to simulate the building’s behavior both before it is built and throughout its life cycle, will change the architect’s design process, fee structure, and relationship with the client, contractor and the community. In addition to transforming the architect’s own practice, ownership of the 3D computer model will carry important competitive advantages in procuring all future work associated with the same building.

Traditional CAD vs. Virtual Building Technology

So what is the difference between traditional CAD drafting and Virtual Building Technology? Traditional CAD is the world of lines, arcs, circles and blocks. With traditional CAD, your drawing is a 2D representation of how the building will be built. It is very similar to hand drafting but automated with computer technology.

With Virtual Building Technology, you construct a building using building elements: floor slabs, walls, roofs, windows, doors, stairs and other objects. A Virtual Building uses intelligent objects to create building elements. With object oriented CAD each object in the system represents a building element with a behavior and intelligence relevant to that element. For example, the behavior of a door is different than the behavior of the wood used to construct it. Because you have the real model of a building, not just a 2D representation of one, you can ask it building specific questions. For instance, you can get detailed reports on egress analysis, heat loss analysis, code compliance or cost takeoffs.

From the Virtual Model, buildings can be analyzed with respect to building mass, overshadowing and visual appearance. ArchiCAD can automatically generate plans, elevations and sections, perspective views, animations and virtual reality views.

Integrated Building Information

Architects and building professionals using integrated 3D CAD software generate a wealth of valuable building information that can be used for both the traditional architectural practice as well as for many new fields and services. Some of the opportunities that can utilize this information are:

- Building master planning, design and development
- Creation of renderings, animations and virtual reality scenes
- Production drawings, details and schedules
- Building marketing
• Management of building spaces and assets
• Post-occupancy studies and simulation of design changes
• Analysis and visualization of product performance over the building life cycle
• Content development for electronic building component objects including product data and links to manufacturer Websites

With ArchiCAD and its Virtual Building Technology, architects, in partnership with owners, are in a prime position to assert their central role not only in the initial design of buildings, but also in their long-term programming, maintenance and operation.

How Firms use ArchiCAD

As the new age of Virtual Building Technology unfolds, architecture firms and the building industry must consider how to effectively apply Virtual Building Technology to design, production, collaboration and information analysis. ArchiCAD offers a complete solution and, unlike other CAD systems, has been built on the foundation of architecture.

With this in mind, there are a variety of architecture firms using ArchiCAD and its Virtual Building Technology system. The firms range in size from one man firms to several hundred and specialize in a variety of projects including housing, retail, commercial, schools and others. Here is what several architects have to say about ArchiCAD and their use of Virtual Building Technology:

House+House Architects (San Francisco, California)

“Part of ArchiCAD’s value lies in modeling and easy perspectives; you do not need to put a lot of effort into it,” Steven House said. “But it is worth it to take the extra step to create views with a different flavor. The results can be very powerful.”

House+House are very hands on with their projects, working closely with builders, artisans and craftsmen to ensure that no detail goes unconsidered. “We are very excited about our explorations in ArchiCAD,” Steven said. “And the potential it offers for us to communicate design ideas to our clients, our builders and ourselves.”

STUDIOS Architecture (Washington, D.C.)

With a tight project timeline, the design team at STUDIOS appreciated ArchiCAD’s ability to generate three-dimensional models automatically from the floor plan and section views allowing them to advance the construction documents, make design studies and prepare client presentations at the same time with relatively little additional work.
“Modeling in 3D gives you and your client a chance to look at a design critically and react to it,” project architect Bill Deegan said. Deegan also cites that STUDIOS could shave off critical time by sending QuickTime VR scenes to the client by e-mail and through an Intranet which links STUDIOS U.S. offices in Washington, D.C., San Francisco and New York.

The Orcutt/Winslow Partnership (Phoenix, Arizona)

When Orcutt/Winslow began to fully embrace the Virtual Building method of working, they had to rethink their billing process. “The time spent on the project is greater up-front, but the documents phase time and effort has been significantly reduced,” Winslow said. ArchiCAD’s single, integrated database allows them to start the input of specific materials and systems at a much earlier point in the design phase. With this method, they can show these details at any point, and comfortably make modifications because any changes made will be updated in all views. “Our schematic designs show a much more complete three-dimensional presentation to the client and allow us to evaluate the design in 3D more thoroughly at early stages.”

“Office morale and profitability are both on the rise and we are currently in the process of shifting our project phasing percentages to take into account the Virtual Building methodology,” added project manager Russ Sanders. “More time is expended up front establishing the links from the primitive model to the layout sheets. Once this is done, the rest of the project can be developed within the model. By the time we have completed the design development phase, we are actually about 60 percent complete with construction documents.”

Rockefeller/Hricak Architects (Venice, California)

“We would like to think that the appearance of our work is a direct result of how it gets built. Using ArchiCAD to build a ‘living’ model of the building helps us to focus on issues and assist us in making design decisions as the project takes shape.” The firm is concerned not just how buildings look, but also how they function over time.

“We need to be able to predict how the building will look 10 to 20 years down the road, because that affects the way we design it,” Hricak said. “If something is going to wear out in 20 years, we need to understand how that element interacts with what is around it. Obviously the structure is not going to wear out, but windows will be repaired, and equipment will become obsolete. ArchiCAD helps us be clear about the separation of systems and get a sense of how the building will perform.”
How the Book and CD-ROM Work Together

The book is divided into seven sections beginning with the introduction of concepts then moving through the construction of a Virtual Building. The interactive CD-ROM acts as a virtual assistant that answers questions with real-time movies of each step. All you need to use the interactive is a standard web browser.

Whenever you see this icon...

...it means there is a QuickTime movie demonstrating the step. To view the movie, insert the *Step by Step Tutorial* CD-ROM into your computer’s CD-ROM drive. Open the CD-ROM and double-click the file called *Step Interactive*. This will open into your default web browser.

To locate the corresponding movie for a step, use the information under the CD-ROM icon.

Part 1 - Indicates the main section, Part 1: Concepts and Tools
Step 4 - Indicates the step, Step 4: Editing and Notation
Movie C - Indicates the movie designation for Step 4, Movie C - Multiply Exercise
No 1 - 4 - Indicates the exercise numbers if the movie refers to more than one exercise

To play the QuickTime movie, simply click the name of the movie (the name in color with an underline), such as Movie C - Multiply Exercise. The screen will jump to the movie and begin playing it.

It is that simple!
How to Install and Use the Step Files and the Demo Version of ArchiCAD 7.0 on Windows

Insert the Step by Step CD-ROM into your computer’s CD-ROM drive. The main dialog box of the installation appears on your screen, where you can choose from four options by single clicking on the appropriate caption:

- **Install Step by Step Tutorial**
 If you have an installed ArchiCAD 7.0 on your hard drive and you need only the Step Files and the Tutorial, click **Step by Step Tutorial** and follow the installation procedure. Once completed, the requested items appear in the existing ArchiCAD 7.0 folder. Double-click on them and discover your new ArchiCAD files and Tutorial.

- **Library Manager**
 If you try to open a Step file and the **Library Manager** dialog box appears, asking where the ArchiCAD Object Library is located on your hard drive, you must:
 1. locate the ArchiCAD folder,
 2. open it and select the folder called *ArchiCAD Library 70*,
 3. click the **Add** button in the center of the dialog box,
 4. click the **Done** button.
• **Install ArchiCAD 7.0 Demo**

If you wish to install a Demo version of ArchiCAD on your hard drive, click ArchiCAD 7.0 Demo and follow the installation procedure.

A dialog box will suggest the location of the installation on your hard drive, but you can select another hard disk for the ArchiCAD Demo version.

Once completed, the ArchiCAD 7.0 Demo folder will appear in the specified place. Double-click on ArchiCAD.exe contained in the ArchiCAD 7.0 Demo folder and discover your new application.

• **Browse this CD**

If you wish to see or use the contents of the CD directly, click Browse this CD.

• **Exit**

If you wish to close the main dialog box and finish using the Step by Step Tutorial CD, click Exit.
How to Install and Use the Step Files and the Demo Version of ArchiCAD 7.0 on MacOS

Insert the Step by Step Tutorial CD-ROM into your computer’s CD-ROM drive. The contents of the CD-ROM will appear on your screen.

• Install Step by Step Tutorial

If you have an installed ArchiCAD 7.0 on your hard drive and you need only the Step Files and the Tutorial, click Step by Step Installer. A dialog box will ask for the location of your ArchiCAD folder. Click the Select Folder button to browse your computer for the requested folder. Click Continue and follow the installation procedure.

Once completed, the requested items appear in the existing ArchiCAD 7.0 folder. Double-click on them and discover your new ArchiCAD files and Tutorial.
Library Manager

If you try to open a Step file and the Library Manager dialog box appears, asking where the ArchiCAD Object Library is located on your hard drive, you must:

1. locate the ArchiCAD folder,
2. open it and select the folder called ArchiCAD Library 70,
3. click the Add button in the center of the dialog box,
4. click the Done button.

Install ArchiCAD 7.0 Demo

If you wish to install a Demo version of ArchiCAD on your hard drive, follow the instructions below:

- Open the folder called ArchiCAD 7.0 Demo located on the Step by Step Tutorial CD-ROM.
- Double-click on the Installer icon. A dialog box will suggest the location of the installation on your hard drive, but you can select another folder for the ArchiCAD Demo version.
- Click Continue. Once completed, the ArchiCAD 7.0 Demo folder will appear in the specified place.
- Double-click on the ArchiCAD icon contained in the ArchiCAD 7.0 Demo folder on your hard drive and discover your new application.
Using the ArchiCAD 7.0 Demo Version

Double-click on the ArchiCAD.exe (PC) / ArchiCAD 7.0 icon (MAC), to start the ArchiCAD 7.0 Demo version. The Welcome to ArchiCAD information box appears:

Starting a Tutorial Exercise

When the ArchiCAD 7.0 version is open on screen, go to the File Menu and Open the file Step-xx.pln located in the Step Files folder.
PART ONE: CONCEPTS AND TOOLS

1. INTRODUCTION TO ARCHICAD
2. TOOLS AND PALETTES
3. CURSOR FORMS
4. EDITING AND NOTATION
5. THE 3D ENVIRONMENT
6. UNDERSTANDING LIBRARIES
Introductory Step:

Introduction to ArchiCAD

Overview
The Introductory Step begins with ArchiCAD’s workplace. Here you will learn the basic windows of the working environment and how to customize these windows to create your personal workspace.

This exercise will also introduce the concepts of objects and how an object’s parameters influence the way it is defined.

Process to Learn
• ArchiCAD Workplace
 Floor Plan Window
 Section/Elevation Window
 3D Window
• Concepts of Parametrics
• ArchiCAD’s Help System

Starting the Step
To begin this step, double-click the file named Introductory Step.pln contained in the Step Files folder.
The ArchiCAD Workplace

This step introduces the visible elements of the ArchiCAD working environment. They will help you find your way around the ArchiCAD workplace and understand the role each component plays in using ArchiCAD. In many respects, the ArchiCAD workplace is similar to conventional design and drafting environments. We like to think that ArchiCAD begins where your drafting table leaves off.

The ArchiCAD workplace is designed to provide you with tools that look and feel comfortable, but have all the power and precision available to a computerized system.

The Introductory Step opens to the ground floor of a two-story building. Here we can view the three components of ArchiCAD’s workplace. These three workspaces are linked working environments. The working environment allows an interactive drawing process between the Floor Plan, Section/Elevation and 3D Window. Elements are updated in all views to reflect current changes to the model.

- **Floor Plan Window**
- Section/Elevation Window

![Section/Elevation Window](image1)

- 3D Window

![3D Window](image2)
The Floor Plan Window

The center of the ArchiCAD workplace is the **Floor Plan** worksheet. This Window plays two roles at the same time:

- It displays a representation of the project as a traditional architectural drawing.
- It is a 2D/3D modeling environment that is interactive with the Sections/Elevations and 3D workspace.

With the **Floor Plan** window open, we can view the plans for both floors of this building. To move up a story, click on **Stories** in the **QuickViews** floating Palette (normally displayed on the right) and then double-click on **Upper Floor**. The use of the **QuickViews** Palette is explained in detail in *Step 2.*

The **Floor Plan** worksheet is like a sheet of drafting paper. However, a traditional mechanical drafting board is limited by the size of the paper you can fit on it, while the ArchiCAD worksheet can be as big as you want it to be. You can pan and zoom the Window within the full drawing space to obtain the best view of the work you are doing.
The Section/Elevation Window

Using the Section/Elevation Tool in the Toolbox, you can generate any number of sections or elevations of your project, which will appear in separate Windows.

The Section/Elevation Window is interactively linked to both the Floor Plan and 3D Windows. Elements selected in this Window are recognized as walls, beams, columns, slabs, roofs, windows, doors, lights and library parts. These elements are fully editable using the same editing tools as you use in the Floor Plan workspace.

You can also add drawing elements to this Window using the 2D drafting tools, place objects and text blocks on the section/elevation and even copy and paste parts of the Window to the floor plan for completing detailed working documents.

Section/Elevation views are saved with your project model file. It is also possible to save them as separate files in a variety of drawing formats using the Save As... command under the File menu.
The 3D Worksheet Window

The 3D Window is used for three-dimensional visualization of the architectural project and as a project editing environment.

Either the complete project or just the parts you select in plan view will be displayed in the 3D Window. Block, Wireframe, Hidden line and Shaded views are available in all types of parallel and perspective projections. The 3D Window serves a variety of functions:

- In your design phase, the 3D Window will serve as a source for visual feedback of your work.
- It is an interactive Window, so you can move freely about in the 3D environment both in Parallel and Perspective projections.
- The elements in this Window, as in the Floor Plan and Section/Elevation Windows, are completely editable.
- For PhotoRenderings, the 3D Window sets the view that will be used to produce a final photorendering.
- For output to other applications, a 3D file can be exported from the 3D Window.
The Concept of Parametrics

An ArchiCAD innovation, parametric object definition allows a single stored object (i.e., window, door, light, stair or truss) to represent dozens of similar objects by simply changing their height, thickness, material and other custom parameters. Each object can also be re-saved under another name allowing you to quickly build up your own specific library.

To view an example of how parameters are used, double-click on the **Window Tool** in the **Toolbox**. The dialog contains various parameters that can create a window with different forms, shapes, sizes and materials.

To make changes to the selected window, click in any of the Parameters fields with your cursor and change the settings (i.e., width, depth, length, height). As you change the settings, view the window in top view, side view, hidden line 3D view, shaded 3D view and as a preview picture using the **Display Mode** buttons.

You can choose between window objects using the thumbnail previews in the browser at the top of the dialog, by selecting a different window library from the list on the left-hand side of the dialog box or by choosing another catalog with the **Load Window** button top right.
ArchiCAD’s Help System

ArchiCAD has several help systems in place:

1. Click on any interface item to display a help by explaining the use of the items.

2. When you begin an action, the **Prompt Box** will prompt you for the next action. The **Prompt Box** is part of the **Control Box** (another floating palette, normally situated bottom right) and can be displayed by clicking on the prompt icon (Mac) or maximize icon (Windows) in the upper right corner of the **Control Box**.

3. Integrated into ArchiCAD is the ability to launch several separate sources of help documentation in HTML or PDF format that can be viewed while still in the ArchiCAD application. To access the documentation, go to the **Help** menu and select the desired subject.
Step 1:

Virtual Building Basics

Overview

In this first exercise, you will see how the Virtual Building works by drawing a simple set of elements in Floor Plan view, and then examining them in the 3D Window and in a calculation list.

Process to Learn

• Creating Walls
• Insert Objects
• Change Wall Properties
• Creating a Calculation List

Starting the Step

To begin this step, double-click the file named Step-01.pln contained in the Step Files folder.

Introductory Exercise

The following exercise will demonstrate a simple introduction to the ArchiCAD environment. You will create two simple intersecting walls, insert an object into the wall, and create a quick 3D view of the results. As you follow this exercise it is not necessary that your information and settings exactly match those shown.

Double-click the ArchiCAD file named *Step-01.pln* in the *Step Files* folder. You can use this file to begin the following exercise.

The **Wall** Tool should be active in the **Toolbox**. Move your cursor to the upper left part of your screen and click once with the mouse to set the beginning of the wall. Move the cursor horizontally to the right with the Shift key held down. Click again to finish the wall. Your wall should look similar to the one below.

Go to the **Window** Menu and select **3D Window** to see a 3D view of the wall that you built. The wall that you drew in plan is not just a 2D wall made up of lines and fills, but an actual object. It is a wall with various architectural building properties. Select **Floor Plan** to return to the **Floor Plan Window**.

Double-click on the **Wall** Tool in the **Toolbox**. A dialog box appears that allows you to customize the properties of selected walls or new walls that are yet to be drawn. Change the wall construction by clicking and holding on the existing fill pattern. A pop-up menu will appear. Here you can select other wall properties. These changes affect the wall globally, in plan, elevation, section, 3D and in listing information. Select the fill indicated below by moving your cursor in the pop-up menu.
Step 1: Virtual Building Basics

Draw a new wall and notice the fill pattern and plan dimensional changes.

Select **Undo** from the **Edit** Menu (twice) to undo the two walls that you drew. Now select the **Wall** Tool again and draw a new wall. This time hold the Shift key down before clicking to end the wall. This will constrain the wall either horizontally or vertically; draw a horizontal wall. To connect a wall to this new wall, place the Cursor on the corner shown. The Cursor changes to a **Checkmark**, indicating that the cursor is perfectly aligned with that corner of the wall.

Once the Cursor appears, draw another wall, but this time vertically, with the Shift key held down. The walls should look similar to those below.
Step 1: Virtual Building Basics

To see the clean intersections, turn the Clean Wall & Beam Intersections ON in Options/ Display Options.

Now double-click on the Window Tool. This dialog allows you to customize the settings for a selected window. Select a window and review the different settings. In this case use the defaults.

With the Window Tool selected, move the cursor over one of the walls until it changes into a Mercedes form. Now click on the wall. A hole appears where the window will be placed. Next click to define on which edge of the wall opening the window will actually be placed.
Now go to the **Window** Menu and select **3D Window** to see a 3D view of the wall and placed window. To see a wireframe view as in the image on the right, go to the **Image** Menu and select **Shading**.

Select **Floor Plan** from the **Window** Menu. Now select **List Elements** from the **Calculate** Menu and choose **Basic**. This creates a simple list of information that tracks all the drawn building elements and their related information. The list you created here is very simple, but you can gather information such as material, surface finish, quantity, volume, price, etc. All this listed information changes dynamically as any changes are made in the **Floor Plan, Section/Elevation, 3D** or **Tool Setting**.

These exercises are just an introduction to ArchiCAD. The tools, dialog boxes, and information presented here and the following chapters are very powerful and integrated, yet always easy to learn and use. The rest of this manual will guide you through the ArchiCAD application in more detail.
Step 2:
Tools and Palettes

Overview
The second step will review the five main palettes used by ArchiCAD. This will give you an overview of the purpose of the palette and how to access and use them.
This exercise will also demonstrate how to customize the palette shapes and sizes for your individual setup.

Process to Learn
• Customizing the Workplace
• Toolbox
• Info Box
• Coordinate Box
• Control Box

Starting the Step
Open a new ArchiCAD file with the default settings. To do this, hold down the Alt key (Windows) or Option key (Macintosh), then go to the File Menu and choose New and reset, or open the file named Step-02.pln contained in the Step Files folder.
What to Do

Customizing the Workplace: The Tools and Palettes can be customized to your preferences. To do this, go to the Window Menu and select Floating Palettes/Palette Shapes. Here you can change the shape and size of your Palettes. Also, each individual Palette can be turned on or off by selecting Hide/Show.

1. The Toolbox: The Toolbox is where you start in ArchiCAD. The Toolbox is divided into five basic parts: Selection Tools, 3D Tools, Notation Tools, 2D Tools and Visualization Tools.

 • Review the Tool Settings Dialogs: Each Tool has a settings dialog associated with it. To review the dialogs for each Tool, double-click the Tool.

 Note: that each tool has various settings for Floor Plan, Section, Model and Properties. The Wall Settings dialog is typical of the basic settings for each of the 3D Tool settings.
The Library Settings dialog (shown below) is similar for all library parts which includes windows, doors, lamps, objects and stairs. This dialog contains a library part browser at the top and a system explorer tree to the left. You can customize the view of the dialog.

2. **Info Box**: The Info Box allows you to easily choose among construction methods, change geometry methods, and view instant feedback on the elevation, layer information and ID number of construction elements. It also
allows you to reach the most important settings of any element and directly modify some of their parameters. The items displayed in the **Info Box** vary according to which ArchiCAD Tool is currently selected.

- **Review the Controls for Each Tool**: In this exercise, click each Tool in the **Toolbox** and observe how the **Info Box** settings differ for each Tool selected. A few typical controls are shown below:

3. **Coordinate Box**: The **Coordinate Box** shows you the precise location of the ArchiCAD Cursor within both the Cartesian and the polar coordinates for your drawing. This allows the entering and the viewing of very accurate numeric information through the keyboard, in addition to or instead of the mouse. This Box also allows you to turn the **Snap Grid** on or off, turn **Gravity** on or off, and move the **User Origin**.

- **Draw a Wall Segment**: Drawing information numerically input through the keyboard can be used to define specific angles, lengths or location points. With the triangle depressed in the **Coordinate Box**, click to start drawing a wall. Enter 4'-8" for x, 0 for y and Return. You now have a 4'-8" wall.

1. Click to start wall. 2. Type in the coordinates. 3. Hit Return or Enter to finish.

4. **Control Box**: The **Control Box** gives you the ability to constrain the drawing angle and cancel or confirm the current drawing operation. It also allows you to group or ungroup elements, choose extension line settings, select offsetting commands, and provides active Tool specific help in the **Command Prompt** area during different drawing steps.
• **Review the Control Box**: Select different Tools from the Toolbox and draw a simple shape with each one. Observe the Command Prompt area during the tool operations for help.

Expanded Control Box with Command Prompt
Step 3:
Cursor Forms

Overview

In this step, you will learn how ArchiCAD's intelligent Cursor provides automatic snaps, editing and selection functions. The Cursor is designed to change form as it responds to a variety of functions in the working environment.

This step will explore techniques of applying Cursor forms to drawing methods.

Process to Learn

• The Intelligent Cursor
 Types of Cursor Forms
 Functions of the Cursor

Starting the Step

To begin this step, double-click the file named Step-03.pln contained in the Step Files folder.
Information

ArchiCAD uses an intelligent Cursor to aid, simplify and speed the drawing process. Various Cursor forms are used by ArchiCAD depending on the type of Tool and function selected. As you work in ArchiCAD, you will see that in different locations or situations the Cursor will change shape, informing you about its relation to existing elements or actions expected from you.

What to Do

1. **Empty Pencil**: Select the **Wall** Tool and begin drawing a wall. An **Empty Pencil** will appear after you begin drawing with the Tool. This indicates that you are in the drawing mode. Click again to complete the wall.

2. **Cross Hair**: Move the Cursor away from the wall and note that your Cursor appears as a **Cross Hair**. This indicates that ArchiCAD is waiting for you to begin an operation using that Tool.

3. **Arrow**: Select the **Arrow** Tool in the **Toolbox** and note that the Cursor is now shown as an arrow. This is your selection Tool.

4. **Checkmark**: Drag your Tool over the corner of the wall. A **Checkmark** will appear indicating that the Cursor is snapping to the corner. The **Checkmark** will appear differently for each side of the wall. This is because ArchiCAD uses a construction line to automatically clean up wall intersections. The **Heavy Checkmark** indicates the construction line side of the wall. To see the construction line, turn **Wall & Beam Intersections** to No in **Options/Display Options**.

 Turn **Wall & Beam Intersections** to Yes again.

 Select the **Wall** Tool and the **Checkmark** becomes a simple check.
Step 3: Cursor Forms

5. **Filled Pencil**: Click again as indicated in the diagram and drag the **Empty Pencil** across the edge of the wall. Note the different Cursor forms that indicate which side of the wall is the active construction line.

6. **Perpendicular Sign**: Now drag the **Striped Pencil** to a point that appears perpendicular to the wall. The intelligent Cursor will indicate you are snapping to a perpendicular edge.

7. **Striped Pencil**: Now drag the **Empty Pencil** across the end of the wall. Note that on the end of the wall the pencil shows as filled. This is because a wall has a hot point at the four corners.

8. **Intersection**: Now draw a line crossing the other wall as shown. Drag your Cursor to the intersection of the two walls. The cursor changes to a **Crosspoint**, indicating that you are snapping to an intersection.

9. **Mercedes Sign**: Now put your Cursor alongside the edge of the wall. Notice how it changes to a **Mercedes** sign. This indicates that you are snapping to an edge. Note the different Cursor forms that indicate which side of the wall is the active construction line.
10. **Tangent Sign**: Select the **Wall** Tool and select the **Center Arc** geometry method from the **Info Box**. Draw a circular wall as shown. Now select the **Single Wall** option from the **Info Box** and draw a wall to a tangent of the circle as shown. The Cursor will change to a **Tangent** sign indicating you are snapping to the tangent edge.

11. **Trident Sign**: Click on the **Marquee** Tool in the **Toolbox**. Now draw a marquee window as shown. Notice that the Cursor changes to a **Trident** sign when placed over the marquee area. When the **Trident** appears, you can click and drag the marquee you have drawn and its contents.

12. **Hammer**: The **Hammer** is used to confirm an operation such as placing a dimension or a slab. To place a dimension, select the **Dimension** Tool, click your Cursor at both ends of the wall and then double-click. The **Hammer** will appear to place the dimension.

13. **Magic Wand**: The **Magic Wand** allows automatic operations such as wall tracing and creating fill boundaries. As an example, select the **Wall** Tool and select the rectangular geometry option from the **Info Box**. Draw a rectangular wall as shown. Now click on the **Fill** Tool, click the **Magic Wand** button from
Step 3: Cursor Forms

the **Control Box** and click inside the box to place the fill. The **Magic Wand** is also available in the **3D Window**.

14. **Eyeball & Double Eyeball**: The **Eyeball** and **Double Eyeball** indicates on which side to confirm an operation. Highlight the **Door** Tool and drag your Cursor to the edge of the wall until it turns into a **Mercedes** sign. Click on the wall edge and an **Eyeball** will appear. As you move the **Eyeball**, the insertion point of the door changes.

The **Double Eyeball** locates the position of an edge-placed door or window.

15. **Eyedropper/Syringe**: This feature will automatically capture the settings and parameters from an object and allow you to draw with those settings or transfer the settings to another object. Using the door you just inserted, drag your Cursor to the edge of the door until you see a **Checkmark**. Now hold down the Option key (Mac) or Alt key (Windows). An **Eyedropper** will appear. Click on the door to capture its settings. Now draw another wall and place the door. Notice that the two doors are identical.
Draw a new wall and insert a window in it with the default window settings. Next, double-click the **Window** Tool and change the window width. Click **OK** and place the window into the wall. Now capture the settings of the new window using the Option key (Mac) or Alt key (Windows) and the **Eyedropper**. Drag your Cursor to the first window you inserted and hold the Option and Command keys (Mac) or Alt and Ctrl keys (Windows) down. A **Syringe** Cursor form will appear. Click the edge of the window to transfer the window settings.

16. **Markers** for **Half**, **Divisions**, **Percent** & **Distance**: Turn on the **Marker** button on the **Coordinates Box** and select **Half**.

Now drag your Cursor across the edge of the wall. A line marking the middle of the wall will appear. These are **Hotspots** on the wall that your Cursor can snap to. They are only temporary and will disappear after a few seconds.

Repeat the above step to place a **Marker** for **Divisions**, **Percent** and **Distance**.

17. **Cursor Alignment**: ArchiCAD's Cursor has a Rubberband Line that can align distant points and edges. This Rubberband Line has three modes:
 - Horizontal Alignment
 - Vertical Alignment
 - Angular Alignment

To use these modes, click to start drawing a wall and hold down the Shift Key. This will invoke an automatic mouse alignment in either a vertical, horizontal or preset angle, which can be set in the **Preferences**. To use the Cursor...
alignment, select one of the three choices from the **Control Box** while holding down the Shift Key.

18. **Scissors**: This form is used when trimming elements. The **Black Scissors** appear on top of elements that can be trimmed, while the **White Scissors** indicate that there is nothing to trim. To trim the wall, drag the Cursor to the edge of the wall while you hold down the Command key (Mac) or Control Key (Windows). The **Black Scissors** will appear. Now click on the wall.

19. **Cloud**: The **Cloud** represents the empty space over the horizon in perspective views. You cannot draw in this space of the **3D Window**.

20. **Context Menu**: ArchiCAD’s **Context Menu** offers quick Menu commands specific to the item currently selected. To access this Menu, select the item and hold down the Control Key on Macintosh or use the Right Click mouse option on Windows.
Step 4: Editing and Notation

Overview

In order to use productively the Tools we have learned, some key methods of editing and notation must be examined. This exercise will introduce these methods.

Process to Learn

• Editing
 Drawing Grid
 Setting Mouse Constraints
 Offset Controls
 Multiply Command
 Resize Command
 Stretch Command
 Explode Command
• Notation
 Text
 Label
 Dimension
• Find & Select

Starting the Step

To begin this step, double-click the file named Step-04.0.pln contained in the Step Files folder.
What to Do

1. **Drawing Grid**: The Grid provides an easily adjustable and accurate Reference Grid on which to draw. The default is a horizontal and vertical grid system; however, the Grid can be rotated.
 - **Set the Grid to the Default Orientation**: In the Coordinate Box, make sure that the default horizontal/vertical grid is active by clicking on the appropriate button. The left button is the default Normal Grid.

 ![Grid Setting](image)

 - **Create a New Grid**: Click on the Skewed Grid icon shown below.

 ![Skewed Grid Icon](image)

 Immediately after clicking on the button, draw a line anywhere in the Floor Plan Window. When drawing the line, enter numeric angle information in the Coordinate Box if needed. The first click will define a new User Origin.

2. **Setting Mouse Constraints**: Constraining the mouse allows you to draw automatically at preset angles, such as 0, 90 and 45 degrees relative to the active Grid.
 - **Edit Mouse Constraints**: Go to Options/Preferences/Mouse Constraints & Methods. Here you can set which Grid is used as the active Grid. If you create a Skewed Grid, as in the previous exercise, here is where you indicate if you want your Cursor to react relative to the Skewed Grid or to the default Normal Grid when you draw your plan elements.

 ![Preferences Window](image)

3. **Offset Controls**: ArchiCAD features the ability to create new lines, slabs, roofs, walls, beams and curves that are a controlled distance from the existing elements from which they are offset. You can make single or multiple offsets in one command.
 - **Create a single Offset element**: Draw or use a series of walls as shown in the file `Step-04.0.pln`. To offset these walls, select the Wall Tool and select the Single Offset button in the Control Box. Then click on the Magic Wand.
Step 4: Editing and Notation

Move the Magic Wand over to the walls. Click on the walls with the Magic Wand and drag the desired distance away from the walls. Click to finish.

Select lines to offset.

Select the Single Offset button, the Magic Wand and then click and drag on the lines.

Double-click on desired spot to end.

- Create Multi-Offset Elements: Creating multiple offset elements is almost identical to creating single offset elements. Follow the same steps as previously mentioned except in this case choose the Multiple Offset button. When dragging to offset, every click location will create a new element. Double-click to finish.

Select lines to offset.

Select the Multiple Offset button, the Magic Wand and then click to create copies.

Double-click on desired spot to end.
4. **Multiply**: The Multiply command creates any number of exact copies of selected elements using the following options:

- **Drag** multiplies the copies along a straight path defined by the reference line.
- **Rotate** multiplies the copies along an arc, using the angle specified in the reference arc or numerically.
- **Elevate** stacks the copies with a vertical displacement.
- **Matrix** creates a group of columns and grids with the option of vertical displacement.

Multiply in One Direction

Place and select column: Draw a column or double-click the file Step-04.1.pln in the folder named Step Files. Select the column with the Arrow Tool. Select **Multiply...** from the Edit Menu. In the Multiply dialog, select the Drag radio button from the Choose an action section. Enter 3 as the number of copies. Leave vertical displacement at zero. Select **Distribute** from the distribution choices. Click OK.

Drag copies: Click on the object and drag in any direction. Notice the ghosting of the copies that are created. Click to place your desired endpoint and to finish.

Multiply in Multiple Directions: Draw a column or use the opened file Step-04.1.pln. Select the column with the Arrow Tool. Select **Multiply** from the Edit Menu. In the Multiply dialog, select the Matrix button from Choose an action. Enter 4 copies Along First Stroke, 5 copies Along Second Stroke and leave vertical displacement at 0. Select **Distribute** from the distribution choices.
Step 4: Editing and Notation

- **Drag Copies**: Click on the column and drag the copies horizontally. Click to place the copies. Drag vertically to distribute the copies vertically. Click to finish Matrix.

![Diagram showing column copies being dragged horizontally and vertically]

5. **Resize**: The **Resize**... command allows you to select objects/elements and change their physical dimensions along with the spatial relationship.

- **Create Several Elements to Resize**: Place several library objects, enter text, and draw a wall, similar to the diagram shown or double-click the file *Step-04.2.pln* in the folder named *Step Files*.

- **Select Elements to Resize**: Select the wall and a library part to resize. Access the **Resize...** command from the **Edit** Menu. Deselect **Define Graphically** and enter 150 into the percentage box. Make sure that both the **Resize library parts** and **Resize wall, column thickness** options are checked. Click **OK** and then click in the **Floor Plan Window** to complete the command.

![Resize dialog box showing percentage input]

After resize, notice that affected items do not stay in the same location.
• **Select Elements to Resize Graphically:** Select the same items from previous step. Access the **Resize...** command from the **Edit** Menu. Enable **Define graphically**. Make sure that both the **Resize library parts** and **Resize wall, column thickness** options are checked. Click **OK** and then click in the **Floor Plan Window** to select first resize reference point. Move the Cursor in a diagonal manner and click at second location to define second reference point. A rubberband boundary will appear indicating the increase or decrease in size. Click to finish.

6. **Stretch:** The **Stretch** command is used to stretch or shrink any selected ArchiCAD construction element (except the column). This command allows the endpoint of the selected element to be moved to a new position, stretching or shrinking the element, while the other endpoint remains at its original position.

• **Draw Several Construction Elements:** Draw a wall, line and place an object or double-click the file *Step-04.3.pln* in the folder named **Step Files**.

• **Stretch Elements:** Select the wall and then choose **Stretch** from the Menu. Click on the wall endpoint on its reference line side to move it to another location. A stretch vector will appear. Move the Cursor to the desired position, and click to finish. Repeat the **Stretch** commands with the other construction elements.
7. **Explode**: The **Explode** command allows you to literally explode any complex construction element into basic ArchiCAD construction elements. Complex construction elements are: walls, library parts, windows and doors, columns, beams, slabs, roofs, stairs and dimensions. When exploded, these elements are automatically transformed into groups of lines, fills, curves or other basic elements. Once exploded they cannot be unexploded except by using the **Undo** command.

- **Draw Several Construction Elements**: Draw a wall or double-click the file *Step-04.3.pln* in the folder named *Step Files*.
- **Explode the Elements**: Select the wall and choose **Explode** from the Tools Menu. The wall is now a grouped set of basic elements. Go to the Tools Menu and select **Suspend Groups**. Now select a wall edge and delete it. The wall fill is now also an independent fill. Note that all 3D information is lost when an element is exploded. Repeat the **Explode** command for the other construction elements and see how they are broken down.

8. **Text**: This sophisticated Tool offers multi-line texts, full-scale font options, multiple styles and justification in any direction.

- **Draw a Non-Breaking Text Block**: To create a non-breaking text block, activate the Text Tool and then double-click on the worksheet where you want to type. The text line will continue until you stop typing or hit Enter to start a new line.
- **Draw a Breaking Text Block Area**: To start a line of text, simply draw a rubberband rectangle by clicking twice with the Text Tool on the worksheet. A one-line block with the defined width remains on the screen, including a flashing text cursor indicating your position in the text block.

- **Type within the Text Block Area**: Once the flashing text Cursor appears, you can start typing. Type until the words wrap and continue onto the next line. At any time, by hitting Enter, you can start a new line of text without letting the text block control the return.
• **Spell Check**: The Spell Checker command in the Tools Menu allows you to check the spelling of your ArchiCAD project. The available features are quite similar to those used by Microsoft Word. Spell checking works on text blocks, zones, labels, custom text entered into dimension labels, as well as on door, window, object and lamp parameters.

9. **Label**: Labels are text blocks or symbols (special graphical objects pre-saved as ArchiCAD Label Files: *.lsm) optionally linked to construction elements, allowing you to identify or comment elements or parts of your design. Labels can be framed or unframed, with leader and arrowhead. The **Label Settings** dialog box gives you control over the orientation, typography and text of your label elements.

The available labeling options allow you to label or unlabel manually selected elements, or to use automatic labeling for selected classes of construction elements.

You can use two types of labels in ArchiCAD:

• **Independent Labels** are manually placed and display custom text or symbol information.

Draw Arrowhead and Leader of Independent Label: Click where you want the arrowhead to point on the floor plan. Draw a rubberband line from your starting point and click where you want the first section of your leader to end. Draw another rubberband line in the direction set by the **Label Settings** dialog box for the label handle. Clicking where you want the end of the handle will open the label text box automatically.

Define extents with rubberband rectangle

Type Label Text: Type the label text you desire in the text box and click the **OK** button or hit Enter to complete the operation. A label with the default settings will be placed.
Associative labels can be assigned automatically or placed manually. Optional label contents are text, ID, Internal ID or symbol.

![Associative label example]

You can place an **Associative Label** manually, by clicking on an element with the **Checkmark** or the **Mercedes** Cursor while the **Label** Tool is active.

10. **Dimension**: The ArchiCAD **Dimension** Tool is a powerful and sophisticated feature that allows you to add customized dimension lines to your projects. When you modify dimensioned elements (for example, stretching a wall) the change is reflected in the dimension line and value.

Configure the Settings for the Dimension Tool: Open the **Dimension** Tool by double-clicking on its icon. Configure the settings. Make sure that the **Linear** setting is enabled.

![Dimension settings dialog]

Select Dimension Geometry: Select the **Dimension** Tool by clicking on its icon. Next select the **Horizontal** Geometry Method from the **Info Box**.

![Dimension geometry options]

Select Dimension Points: Mark the first reference point by clicking on a wall node to start from. Click on each end node of the wall and window, then double-click to close the dimension chain. Hitting the Delete key once or pressing the **OK** button in the **Control Box** will also display the **Hammer** Cursor. Click the **Hammer** Cursor to place the dimension string.
11. **Find and Select:** The **Find & Select** command allows you to search for elements matching a virtually limitless combination of criteria. It is also possible to search for elements similar to the one that you select in your project, and save search criteria for future use.

- **Draw a Series of Walls and Windows:** Draw a series of different walls and insert window types with different settings or double-click the file *Step-04.4.pln* in the folder named *Step Files*.

- **Open Find & Select:** Go to the **Edit** Menu and select the **Find & Select** command. Select **Of Type >>** from the **Find Elements** pop-up menu.

Next, select the **Window Type** option in the **Of Type >>** pop-up menu. This defines the first criteria and defines the element type.

The second criteria is to define the specifics of the **Window Type**. Click the **More Choices** button for more search options. Click the pop-up button (which currently shows **Pencolor**) and select **Name**. Next, click the pop-up button.

CD-ROM
Part 1
Step 4
Movie F
button next to the *Name* field and select a window name from the list of **Window Types** in the project.

To select the windows based on the search criteria entered, click the “+” button to add to the selection and the “−” button to remove elements from the selection. When the elements have been selected, double-click the **Window Tool** and modify the **Window Settings**.
Step 5:
The 3D Environment

Overview
The underlying principle of ArchiCAD is that a building is created on the computer not as lines but as a Virtual Building complete with 3D information. This step introduces how to view and edit the virtual model environment and the types of options available.

You begin the lesson using the two basic methods of the 3D Settings: parallel projections and perspective settings.

Process to Learn
• 3D Settings
 Parallel Settings
 Perspective Settings
• Marquee Selection Options
• Interactive 3D Window
 Navigation
• Editing in 3D

Starting the Step
To begin this step, double-click the file named Step-05.pln contained in the Step Files folder.
3D Settings

1. **3D Projection Settings**: Before you display a 3D view or ask for a photorealistic rendering, you can choose from a number of view options in the 3D Projection Settings dialog box. There are two main dialog boxes for 3D views: Parallel Projection Settings and Perspective Settings.

 - **Parallel Settings**: With the *Step-05.pln* file open, choose the 3D Projection Settings dialog under the Image Menu. Using the dialog, try different parallel projections to view the model, such as axonometric, top, side and other view options as shown below. To change your viewpoint, drag the camera around the house and click **OK**. To change the sun position, drag the sun around the house and click **OK**.
• **Perspective Settings:** Open the 3D Projection Settings dialog, under the Image Menu. Click the Perspective button at the top of the dialog and use the Perspective Settings dialog. To try different perspective views, drag the end of the camera and/or the focal point to a different position and click OK.

2. **Marquee Tool:** Use your Marquee Tool to highlight specific areas. The model will be clipped at the Marquee’s boundaries. The thin marquee images one floor and the thick marquee images all floors.

• **Marquee an Area:** Select the Marquee Tool. Select an area of the plan and then view either a parallel or perspective projection to see the result.

3. **Interactive 3D Window:** The 3D Window allows for interactive 3D motion. Interactive navigation through your model is available in both Parallel and Perspective modes. The following steps will guide you through various options for determining position and movement in the 3D virtual environment.
• **Navigate the 3D Window - Parallel Projections**: Go to the **Image** Menu, select **3D Projection Settings** and create a Parallel Projection.

Click on the **Model Axis** button \(\text{\textbullet}\) and then select the **Turn** button \(\text{\textcircled{T}}\) in the **3D Navigation Palette**.

Place the Cursor on the **3D Window** and click and drag the mouse slowly to the right. Drag the mouse to the left. Now try upwards and downwards. You are rotating the model about its axes.

Click on the **Target Lock** button \(\text{\textcircled{L}}\) and then repeat the different rolling procedures. Notice the difference in the way the model rolls.

Click the **Frontal View** button \(\text{\textcircled{F}}\) and then click on a surface you want to view in elevation. The view resets to the elevation of that element.
• **Navigate the 3D Window - Perspective Projections:** Go to the **Image** Menu, select **3D Projection Settings** and create a Perspective Projection.

Click on the **Camera** button and then on the **Walk** button in the **3D Navigation Palette**.

Place the Cursor on the **3D Window** with the Cursor **Arrow** facing up and drag the mouse slowly upward to walk forward; drag the mouse down to walk backwards, and to the right or left to walk to the side.

Try using the **Turn** button and the **Lateral Move Tool**. Notice the difference in movement.

Click on the **Target Lock** button and repeat the previous Tool selections and maneuvers.

Select the **View Cone Angle** to slide the button right or left to change the view cone angle, which affects the current zoom.

4. **Editing in 3D:** The **3D Window** also allows for editing and creating elements interactively in 3D. The editing can be accomplished in the **Parallel Projection** or **Perspective Projection** dialogs. The methods for either dialogs are the same, but simpler viewing is an advantage in the **Parallel Projection**
dialog. The following steps will demonstrate simple 3D editing in the **Parallel Projection** dialog box.

- **Create a Parallel Projection to Edit**: Use the Parallel Projection from the previous step.
 - Click on the **Edit Mode** button in the **3D Navigation Palette** to enable 3D editing. This allows you to select elements in the **3D Window**, similar to the **Floor Plan Window** function.
 - Click on the **Sensitive Cursor** switch in the **3D Navigation Palette**. This enables the Cursor to snap to any element node. If this is off, the Cursor will only snap to nodes in the current reference plane.
 - Click on the **Pointer Lines** switch next to the **Sensitive Cursor** switch. This links the coordinate axes and the Cursor with dotted lines. This is a very helpful Tool that allows you to see the spatial location of the Cursor on screen when you are editing or creating elements.
 - Move the Cursor over several wall nodes to see the results.

- **Select a Wall and Suspend Groups**: Walls are automatically grouped together as you draw. This allows you to select all the walls by clicking on an individual wall. To edit an individual wall, you must ungroup or suspend the group. To do this, click on the face or node of a wall to select all the walls. Then turn on **Suspend Groups** from the **Tools** Menu or select the **Suspend Groups** button from the **Control Box**.

- **Select a Wall to Edit**: Click on the face or node of a wall. The wall nodes will be highlighted indicating that the wall is selected.
• **Stretch the Wall**: Click and hold the Cursor on a wall node. A **Context** Menu appears. Here you can select various functions to apply to the selected wall. Select the **Vertical Stretch** option and move your cursor down the wall. A dashed ghost preview of your stretch effect is displayed as you move the Cursor.

 ![Release the cursor at the location shown](image1.png) ![Updated 3D Window view](image2.png)

• **The Modified Wall**: Once you click your Cursor to end the **Stretch** operation, the **3D Window** automatically updates itself. After the update, you can see how the 3D edit appears.

5. **More 3D Editing**: Other elements can also be edited in the **3D Window**. In fact, almost all operations from the **Floor Plan Window** can be done in the **3D Window**.

• Now that you have tried editing a wall in 3D, try editing the window or dragging a copy of the window in 3D.
Step 6:
Understanding Libraries

Overview

ArchiCAD is an object based program. This step introduces the concept of element types stored in outside files, including doors, windows, lamps, labels, and general objects. These objects can be stored in an ArchiCAD Library, a project library or over the Internet.

This exercise introduces the concept of a referenced library and how to change, add and delete libraries from your project file.

Process to Learn

• What are Objects
 Types of Objects
 Purpose of Objects
 Object Parameters
• Starting with the ArchiCAD Library
• Loading a Project Library
• Loading an Internet Library

Starting the Step

To begin this step, double-click the file named Step-06.pln contained in the Step Files folder.
Step 6: Understanding Libraries

Information

Library Parts are parametric prefabricated complex elements created either by ArchiCAD or a third party application and used as units in projects. When you start ArchiCAD for the very first time, it searches for a Library under the name ArchiCAD Library.

The icons in the Toolbox that reference ArchiCAD Libraries are as follows:

![Toolbox Icons]

What to Do

1. **View an Object Library**: To review the Object Library and how it is organized, double-click the Object Tool in the Toolbox. The Object Settings dialog will appear.

The Object Settings dialog (shown below) is similar for all library parts which includes windows, doors, lamps, objects and stairs. The dialog contains a library part browser at the top and a system explorer tree to the left. You can choose different views.

![Object Settings Dialog]

56 ArchiCAD Step by Step Tutorial
2. **Review the Loaded Libraries:** When ArchiCAD opens a project, it loads one or more libraries from the local hard drive, network or the Internet. To review which libraries that are currently loaded, open **Library Manager** from the **File** Menu.

- **Local/LAN:** The **Local/LAN** tab page allows you to manage complete libraries and individual library parts stored on local disks or on remote volumes connected to your computer through a local area network.

 Click on the **Local/LAN** tab and the currently loaded ArchiCAD Libraries will appear in the dialog.

- **FTP and Web Objects:**
 - Using the **FTP Sites** tab page, you can add libraries and single library parts stored on FTP servers.

 - The **Web Objects** tab page allows you to download GDL Objects from websites and add them to your local libraries.

Since you are currently working from your local hard drive, the **FTP Site** and **Web Object Settings** will be empty since no links have been established to an online site.
3. **Understanding the Status Report**: If a Library Part within your project has not been loaded, you will receive a status message like this:

If this happens, simply open your **Library Manager** by either clicking the **Library Manager...** button in the bottom left corner of the **Status Report** or by choosing the **Library Manager** command from the **File** Menu, then browse and add the missing library part to the active libraries.
PART TWO:
PROJECT & OFFICE SETUP

7. OPTION SETTINGS
8. DRAWING PREFERENCES
9. LAYER ORGANIZATION
10. QUICK VIEWS AND FAVORITES
Step 7:
Option Settings

Overview
We can customize options such as line types, pens, colors, fills, composites and zones to our specific project needs.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because copying is not available in the demo version.

Process to Learn
• Pens & Colors
• Line Types
• Fill Types
• Composites

Starting the Step
Open the file named Step-07.pln contained in the Step Files folder.
What to Do

The document just opened will be used as the basis for much of the remaining tutorial. Each step will build upon the model to create a Virtual Building from which to derive plans, sections, elevations, renderings, virtual reality scenes and more.

Using the controls in the **Options** Menu, you can set up and customize ArchiCAD to reflect your office standards and preferences.

1. **Pens & Colors**: ArchiCAD pen and color assignments are reviewed and modified using the **Pens & Colors...** command. In ArchiCAD, pens are simulated drawing instruments that have a specific color and line weight.

 - **Create Custom Pens and Colors**: Open the **Pens & Colors...** dialog from the **Options** Menu. Place your Cursor in a square within the selection box and then drag it around the squares. Notice that the pen number and Pen Weight change with each pen color. Highlight a pen color and double-click the square. A **Color Picker** dialog will appear allowing you to customize the pen color. (The **Color Picker** dialogs differ on Windows and Macintosh systems.)
2. **Line Types**: When you choose the **Line Types**... command, a dialog box appears allowing you to select, modify or delete the standard line types (solid, dotted, dashed, etc.). You can also define your own customized line or symbol line types.

- **Create a Custom Line Type**: Open the **Line Types**... dialog from the **Options** Menu. Click **New** and enter the name *Small Dashed*. Click **OK**. Enter the numeric values **Dash** - .05 and **Gap** - .05, or manually change the line type spacing by selecting and dragging a flag.

- **Create a Custom Symbol Line Type**: Draw a simple group of elements using the **Line** Tool. Select all the elements and copy the elements using the **Copy** command.

 Open the **Line Types**... dialog from the **Options** Menu. Click **New** and select **Symbol**. Type in the name of the new line type. Click **OK**. Click on **Paste** line components. Enter the numeric values or manually change the Symbol line spacing and scale by selecting and dragging a flag.
3. **Fill Types**: Fills are geometric patterns that can display two faces: bitmapped and vectorial, but only one of the two at one time. You can set this option in Display Options.

- **Create a Custom Fill Pattern**: Draw three lines as shown. Select the lines and copy them using **Copy** in the **Edit** Menu.

Select **Fill Types**... from the **Options** Menu. Click on **New**, select **Symbol Fill**, and type in a name. Click **OK** and then click **Paste**.

The elements you pasted create a new Fill Pattern. Edit the Bitmap pattern by clicking in the **Bitmapped Pattern** box to create black or white pixels. An exact preview of the pattern is not necessary in the box area.
4. **Composite Structures**: Both walls and slabs can have composite structures. Columns have separate fills for their Cores and their Veneers.

- **Create a Custom Composite Wall**: Open the Composites... dialog from the Options Menu. Select Site Wall 08", duplicate and name it Wood Stud Wall. Click OK. Highlight Concrete Structural and change to T & G Gypsum Coneboard with 1/2" thickness. Add new skin with the Add button. Skin name _2x6 Wd.Studs@12"oc.Spr.No.2, Skin thickness 6". After this add a new Skin with the same preferences.

![Composite Structures](image)

Note: Both Fill Types and Composite Structures can be shown with either Bitmap or Vectorial patterns in the Display Options. Bitmap Patterns are faster to display but cannot be scaled, zoomed or rotated, while Vectorial Patterns are slower to display but can be scaled, zoomed and rotated.
Step 8: Drawing Preferences

Overview
This step demonstrates how to define the preferences for the project. Drawing preferences can range from setting the types of measurements used on a project to the sensitivity of the cursor. This exercise will show how to set these preferences to meet your specific project and user needs.

Process to Learn
• Set Drawing Preferences
 Working Units and Dimensions
 Calculation Units and Mouse Constraints
 Construction Elements and Zones
 Imaging and Data Safety
• Shortcut Key Settings
• Set Drawing Scale

Starting the Step
Use your file from the previous step or open the file named Step-08.pln contained in the Step Files folder.
What to Do

1. **Set the Drawing Preferences**: Before a drawing or model is started, it is important to set up the standard settings for the project. To set the preferences, go to the **Options** Menu and select **Preferences**. The pop-up menu at the bottom of the command lists the available options. For the purpose of this exercise, review these options and set them to reflect your preferences.

 - **Working Units and Dimensions**: Go to the **Working Units**. Click **Next** to set the **Dimensions**, which provide a mechanism for customizing and storing different Dimensioning Standards. This is useful for working on several projects with differing levels of accuracy (construction details versus site plans) or projects being built in countries other than those in which they are designed.
• **Calculation Units and Mouse Constraints**: The Calculation Units dialog allows you to set the units to use in quantity calculations. The settings you make here will affect text format lists. The Mouse Constraints & Methods dialog provides control over the angle pairs used for mouse constraint with the Shift key and the sensitivity of the Cursor.

• **Construction Elements and Zones**: Construction Elements preferences allow you to set the default for the line type depicting the outline of slab or roof above or below a story as well as to set the general preferences for 3D Intersection Priorities. The Zones screen contains controls for defining the behavior of Related Constructions when creating zone lists. The top part of the dialog box concerns recesses cut in walls by door and window openings; the Wall & Column Subtraction area defines whether walls and columns can be included or excluded from the zone’s size; and the low Ceiling Reductions specifies to what degree reduced height spaces will be taken into account when calculating zone sizes.
• **Imaging and Data Safety**: The **Imaging & Calculation** dialog provides options for rebuilding the **3D Window**, monitoring rendering progress, creating reports and dealing with error alerts. The **Data Safety** dialog contains a number of features to minimize the risk of data loss and file corruption. This is especially important if your power lines suffer from voltage spikes or failures, or if your computer is prone to software conflicts.

![Imaging & Calculation dialog](image1)

![Data Safety dialog](image2)

• **Web Options and Miscellaneous**: The **Web Options** dialog contains a number of controls related to Internet and HTML formatting. The **Miscellaneous** dialog contains preferences for a variety of features, including multiplatform save, default colors and generic dialog box options.

![Web Options dialog](image3)

![Miscellaneous dialog](image4)

2. **Shortcut Keys**: This command allows you to define your own shortcuts to each Menu command. To view the shortcut key preferences, select **Menu Shortcut Keys** from **Preferences** in the **Options** Menu.
To create a custom shortcut, choose a menu name from the pop-up list, then select a command from the Commands list. You can create a shortcut to the selected item by defining a character combination on the right side of the dialog box. Confirm the defined shortcut by clicking the Assign button. If you don't need the selected shortcut anymore, click Detach.

3. **Setting the Drawing Scale**: Traditional concepts of architectural scale (for example 1/4" =1') become important only when you are creating a scaled hard copy of your project, or exporting the project into either PlotMaker or bitmap picture formats for post-processing in another application. The scaled dimensional size of the drawing does not change if you rescale your document. Only the relative size of fixed (or paper) size elements like text or vectorial hatch patterns changes, as compared to the construction elements (walls, objects, slabs, etc.), which have been defined in world coordinates. These fixed size elements stay at a fixed scale, independent of the working drawing scale.

- After setting a scale, what you see will be a preview of the project if printed or plotted at that scale. To see a real preview, not a zoomed one, choose Actual Size in the Display Menu after setting the scale.

 Note: If you change the drawing scale, the current view will change accordingly, and the current magnification will remain constant. To return to the previous view of the window, choose the Previous View command in the Display Menu.
Create a plan with some construction elements, dimensioning and labeling:

To set the scale of your document, activate the **Floor Plan Scale** under the **Options** Menu or click the scale icon in the workspace. In the **Scale** dialog box specify the scale as 1/8" = 1'-0".

Change the Scale to 1/2"=1'-0". Notice that the 4 pt. text and arrowhead remain the same point size. The construction elements have changed in size relative to the fixed size elements, but they still scale correctly at 1/2" scale.
Step 9:
Layer Organization

Overview
This step is the foundation that manages all the plans, sections, elevations and 3D information for your Virtual Building. ArchiCAD manages this information by using layers to turn information on or off.
As you draw an element in ArchiCAD, the element is automatically assigned a layer.

Process to Learn
• Layer Settings
 Layer Modification
 Layer Combinations
• Project Standards
• Setting Up for Plans
• Setting Up for Sections/Elevations
• Setting Up for the 3D Environment
• Grids & Backgrounds

Starting the Step
Use your file from the previous step or open the file named Step-09.pln contained in the Step Files folder.
Step 9: Layer Organization

What to Do

1. **Layer Settings**: ArchiCAD layers are used to organize the elements in your drawing for selective displays and quantity calculations. The **Layer Settings** command displays the **Layer Settings** dialog box which allows you to define the layer settings for your project. The currently defined layers for your project are displayed in the scrollable list on the left side of the dialog box. To select a layer, click it so that it appears highlighted.

- **Modify Layers**: Open the **Layer Settings** dialog under the **Options** Menu. Select all Layers except the Mark-Up and the Hidden Mark-Up Layer and click the **Clear** button. This provides a clean slate to add layers that are project specific. Next, select each Layer Combination individually and click the **Clear** button.
Step 9: Layer Organization

Using the **Layer Settings** dialog as shown, create new layers by selecting **New** and typing the name of the new layer. Enter the layers from the **Project Layer List** as shown below.

![Layer Settings dialog](image1.png)

Project Layer List

- Appliances
- Building Slabs
- Ceiling Fills
- Ceiling Lights
- Ceiling Slabs
- Columns
- Dimensions
- Elevations
- Floor Plan Text
- Framing
- Framing Plan Text
- Furniture
- Furniture Plan Text
- Landscaping
- Lamps
- Plumbing
- Roof
- Sections
- Site Plan Text
- Site Slabs
- Site Terrain
- Stairs
- Walls - Exterior
- Walls - Interior
- Zones

Once the layers have been entered, create project layer combinations. To do this, type in the layer combination name and click **Add**.

![Layer Combinations](image2.png)

Once all the layer combinations are entered, select **Show** or **Hide** layers for each layer combination as shown. After a layer change, **Modify** the layer combination to update the layer combination. Enter the Layer Combinations from the **Project Layer Combination Setup** as shown below:
Step 9: Layer Organization

Project Layer Combination Setup

Ceiling Plan - Select these Layers to Show
- Ceiling Fills, Ceiling Lights, Ceiling Slabs, Columns, Sections, Walls-Exterior and Walls-Interior

Floor Plan - Select these Layers to Show
- Appliances, Columns, Dimensions, Elevations, Floor Plan Text, Plumbing, Sections, Stairs, Walls-Exterior, Walls-Interior and Zones

Framing Plan - Select these Layers to Show
- Building Slabs, Columns, Framing, Framing Plan Text, Sections, Walls-Exterior and Walls-Interior

Furniture Plan - Select these Layers to Show
- Appliances, Columns, Furniture, Furniture Plan Text, Lamps, Plumbing, Sections, Stairs, Walls-Exterior and Walls-Interior

Site Plan - Select these Layers to Show
- Landscaping, Roof, Sections, Site Plan Text, Site Terrain

3D Model - Select these Layers to Show
- Appliances, Building Slabs, Ceiling Lights, Ceiling Slabs, Columns, Elevations, Framing, Furniture, Lamps, Landscaping, Plumbing, Roof, Sections, Site Terrain, Stairs, Walls-Exterior, Walls-Interior and Zones

The layer combinations generally reflect the drawings that are to be produced (such as floor plan, ceiling plan and furniture plan). It is also necessary to create a 3D model layer combination that turns on all 3D information for sections, elevations and visualization. For example, you may want to turn on an overhead cabinet for a section or perspective view, but turn it off for the floor plan.

When finished, click **OK**. A **Warning** will appear informing you that you have deleted layers and asking if you wish to confirm this. Click **Proceed**.

Note: Default layers are assigned to each tool as a default setting. If the layers are deleted the connection will terminate.

After having created the above layer combinations you can choose between them under **Option/Layers**.

Archicad 3D Model Layer Combination

- **Layers**: Contains various layers for different types of elements.
 - **Pgp & Colors**: Controls layer colors.
 - **Line Types**: Adjusts line styles.
 - **Fill Types**: Modifies fill patterns.
 - **Components**: Manages component layers.
 - **Materials**: Assigns material properties.
 - **Zone Categories**: Organizes zone categories.
 - **Merge Options**: Controls layer merging.
 - **Attribute Manager**: Manages attribute settings.

Layer Settings

- **Show/Hide Layers Toggle**: Enables/disables layer visibility.
- **Active Layer**: Focuses on the active layer.
- **Show All Layers**: Displays all layers.
- **3D Model**: Indicates 3D model layers.
2. **Grids & Background**: The **Grids & Background** dialog allows you to define a working grid configuration as well as establish a background color for your workplace.

- **Create a Project Grid**: Set the Main Grid to 2' and the Snap Grid to a spacing of 1".

Background controls the color of the 2D worksheet itself. Double-clicking the background color will open the **Edit Color** sub-dialog box. You can select your color graphically or numerically by mixing the HSL (Hue–Saturation–Lightness) or RGB (Red–Green–Blue) components.

The **Grid lines** color control works in the same way as the **Background**. A color for the construction grid can be selected for the grid lines themselves.
Step 10:

QuickViews and Favorites

Overview

In Step 10 you will learn how to use QuickViews and Favorites to set up project views, display options, scale and layers as well as how to save default tool settings and settings of previously selected elements.

The QuickViews Palette is generally used to establish the settings for drawing sheets such as the Floor Plan, Ceiling Plan, Electrical Plan, etc. The Favorites Palette can create office standards by saving the default settings for drawing symbols, wall types, window types, roof assemblies, etc.

Process to Learn

• QuickViews
 Types of QuickViews
 Using a QuickView
 Save Current View
 Redefine View

• Favorites
 Understanding Favorites
 Creating Favorites
 Selecting a Favorite

Starting the Step

To begin this step, double-click the file named Step-10.pln contained in the Step Files folder.
What to Do

1. **QuickViews Palette**: There are two types of quickviews, QuickViews for floor plans, sections and elevations and 3D QuickViews for perspectives and parallel projections. The QuickViews Palettes allow you to move around, save and publish different preset and user-defined views at various zoom levels and locations.

 • **Go to QuickViews**: Open the file *Step-10. pln* and click the **QuickViews** Palette in the upper right-hand side of your screen. If the Palette is not there, go to the **Window** Menu, select **Floating Palettes** and **Show QuickViews**, or click on **QuickViews** in the display bar at the bottom of the **Floor Plan Window**.

 ![QuickViews Palette](image)

 • **Create New Views**: Fit your drawing to the entire ArchiCAD Window by choosing **Fit in Window** from the **Display** Menu. Notice the small **Overview Area** in your **QuickViews** Palette. Now zoom in tightly on part of the drawing by selecting **Zoom In** from the **Display** Menu and then selecting the area to enlarge on your floor plan. Maybe you will need to choose **Redraw All OverViews** from the **QuickViews** Menu.

 ![QuickViews Menu](image)

 Notice how the gray square updates in the QuickView according to what portion of the drawing appears on your screen. These views can be saved by clicking on the triangle in the upper right corner and selecting **Save Current View**. When you are done, the new view should be listed in the scrollable list.
Step 10: QuickViews and Favorites

- **Go to 3D QuickViews:** Go to the 3D Window and if the 3D QuickViews Palette does not appear, go to the Window Menu, select Floating Palettes and Show 3D QuickViews.

- **Create New 3D Views:** To create 3D QuickViews, you can either use the Image Menu commands or the Camera Tool to place one or several perspective or VR cameras. Axonometric views defined in the 3D Projection Settings dialog box are also available. When the image is generated, you can save a 3D QuickView by clicking the pop-up button in the top right corner of the Palette.
A pop-up menu appears, listing a number of commands. The list is somewhat shorter than for 2D views. If you choose **Save Current View**... a dialog box is displayed as for 2D views with a number of options specific to 3D views.

2. **Favorites Palette:** The **Favorites** Floating Palette allows you to save and easily recall default tool settings and settings of previously selected elements.

- **Go to Favorites:** To access this palette, choose **Window/Floating Palettes/Show Favorites**. The Palette appears and remains visible on top of the other Windows, like the **QuickViews** Palette.

- **Creating Favorites:** You can save Favorites with the pop-up control on the top right of the Palette. You can add to the **Favorites** the currently active tool’s default settings by choosing **Save Current Default Settings**... in the pop-up menu on the top right. Enter a name in the dialog box that appears.

 Note: This command has no effect if the **Arrow** or the **Marquee** Tool is active in the **Toolbox**.

- **Select** another tool and repeat the steps.

- **Selecting a Favorite:** On top of the Palette, you can choose with a small pop-up control the amount of detail to display.
Select one of the wall types you created. To set the **Wall** Tool to your selected favorite, click the **Set** button. The **Wall** Tool is now set, draw the wall and the default is your selected favorite.
PART THREE: CREATING A VIRTUAL BUILDING

11. BUILDING SLAB
12. WALLS AND COLUMNS
13. DOORS AND WINDOWS
14. STAIRS AND HANDRAILS
15. ROOF PLAN
16. BUILDING STRUCTURE
17. FURNITURE AND EQUIPMENT
18. CEILINGS AND LIGHTS
19. MOLDINGS AND PANELS
20. ZONES AND SECTION/ELEVATION
21. SITE LAYOUT
22. CREATING LIBRARY PARTS
Step 11: Building Slab

Overview
This step will teach you how to use the Slab Tool for creating floor assemblies and how to use the slab as a modeling tool. You will explore various ways of manipulating slab shapes and slab openings.

Process to Learn
• Slab Tool
 Creating a Slab
 Displaying Slab Outline
 Slab Materials
• Editing a Slab
 Editing a Node
 Setting Materials

Starting the Step
Use your file from the previous step or open the file named Step-11.pln contained in the Step Files folder.
What to Do

1. **Slabs**: Slabs are the basic horizontal building blocks in ArchiCAD. Slabs are drawn on the Floor Plan as polygons, allowing them to accommodate any design. Existing slabs are easily modified on the floor plan or through the **Slab Settings** dialog box.

 In this exercise we will create a building slab as shown below. This slab will become the foundation for creating walls and footings.

 ![Building Slab Diagram]

 • **Select the 3D Model Layer Combination**: To set the 3D model workspace that will turn on the Building Slab layer, select the 3D Model layer combination from the **Options/Layers/Layer Settings** dialog box.

 ![Layer Settings Dialog]

 • **Edit Slab Settings**: Double click the **Slab** Tool and set the slab settings to the information as shown below. First set the Floor Plan and Section Attributes and then the Model Attributes:
Step 11: Building Slab

Slab thickness: 1'-0'' and Slab elevation: 0'-0'' to Project Zero

- Draw the Slab: With the slab settings configured, go to the Info Box and select the polygon slab geometry option.

In the Coordinate Box, click the triangle so that it is depressed. This turns on Relative Coordinates, which means that the Origin begins at x=0 and y=0 each time a drafting or editing process is under way. Click on the Project Origin and begin drawing a slab. First select the Y key to highlight the Y field in the Coordinate Box. Enter 24'-0'' for Y and 0 for X. To confirm the slab dimension, use the Enter key. Continue drawing the remaining slab points with the Coordinate Box as previously described.
Complete the remaining points on the slab based on the following dimensions.

- **Create a Curve in the Slab**: To draw a curve in the slab we must add two points to the slab and then extrude a curve from the edge of the slab. First go to the Toolbox and select the Arrow Tool. With the Arrow Tool selected, click the edge of the slab so that it is highlighted.

Next, go to the Control Box and set the Distance where the first point of the slab will start, which will be from the upper right corner of the rectangular slab you just created. Place the Cursor over the edge of the slab to get a distance...
Step 11: Building Slab

mark and click where the distance mark appears. Then click again to confirm the new slab point.

Now repeat the above exercise and add a second point as shown below.

Finally, click in-between the two points you have added to the slab and choose the **Curve** from the **Pet Palette** that appears. Enter the radius, 5'-8", in the **Coordinate Box** and confirm with the Return key.
The final slab will look like this:
Step 12: Walls and Columns

Overview

In this step, you will learn how to build, move and shape Wall and Column elements. It will teach you how to apply dimensions to walls and columns as well as how to use the coordinate system.

Process to Learn

• Wall Tool
 Wall Settings Dialog Box
 Wall Construction Types
 Wall Reference Lines and Intersections
• Column Tool
• Dimension Tool

Starting the Step

Use your file from the previous step or open the file named Step-12.pln contained in the Step Files folder.
What to Do

1. **Layer Combination**: Layer combinations allow us to set our workplace to the appropriate plan type, such as the Floor Plan, Ceiling Plan, Furniture Plan or 3D Model.

 • **Select the Floor Plan Layer Combination**: To set the Floor Plan workspace, select the Floor Plan layer combination from the Options/Layers/Layer Settings dialog box.

2. **Walls**: The wall is a fundamental element in the practice of architecture. When you create a wall in ArchiCAD, you create the outline and hatching of a wall in 2D, a solid wall body in 3D and the wall properties.

 • **Edit Wall Settings for Exterior Walls**: Double-click the Wall Tool and set the exterior wall settings to the information as shown below. First, set the Floor Plan and Section Attributes and then the Model Attributes. Select the layer Walls-Exterior for the layer setting for exterior walls.

 Exterior wall height: 9'-0"
 Exterior wall width: 9 1/2"

 Exterior wall composite: Brick Veneer + 2x4 Wd Stud @16" O.C.

 Wall material - Exterior : Ext-Brick New
 Wall material - Interior : Surface-Whitewash
Step 12: Walls and Columns

• **Create the Exterior Walls:** Walls can be created two ways, either by drawing each wall point by point, similar to the way the slabs were created, or by extruding the walls from the slab.

First, set the reference line of the wall to the exterior edge. To do this, select the right reference line option from the **Info Box.**

Then turn the **Wall & Beam Intersections** to Yes in the **Options/Display Options** dialog box.

To extrude the walls, select the **Magic Wand** and click on the edge of the slab. The walls will automatically trace the outline of the slab.

The extruded walls will appear as in the following plan.

• **Edit Wall Settings for Interior Walls:** Double-click the **Wall** Tool and set the interior wall settings to the information as shown below. Select the Layer **Walls - Interior** for the layer setting for the interior walls.

 Interior wall height: 7'-10"
 Interior wall width: 4 1/2"
Step 12: Walls and Columns

Interior wall fill pattern: Gypsum Board

Wall material: Surface-Whitewash

• **Create the Interior Walls**: Select the single wall geometry option from the Info Box.

Drag the Cursor to the corner of the exterior wall and click. Then drag the Cursor to the opposite wall corner and click.

3. **Columns**: The Column is a Tool for easy definition of columnar structures. All elements created with the Column Tool are either rectangular or circular and can stand free or be connected to walls.

- **Place a Column**: Open the Column Settings dialog by double-clicking on the Column Tool, and then set the column to 6" x 6" x 7'-10". Set the Floor Plan & Section Attributes and then the Modes Attributes as shown below. Select the insertion point to upper right and place a column at the corner of the wall. Place the Column to the Columns Layer.
Column Core Attributes: Wood

Column Material: Wood - Pine

- Multiply the Columns: Click the Arrow Tool, select the column and choose Multiply from the Edit Menu. In the Multiply dialog select Matrix, and set 3 copies along the first stroke and 1 copy along the second stroke. Select the Distribute option. Click OK. Click the column corner, drag the 3 copies to the wall corner and click. Now enter 3'-0" for the X coordinate to complete the second stroke and hit Enter.

- Add Dimensions to the Plan: Open the Dimension Tool by double-clicking on its icon. Select the layer Dimensions for the layer setting and set the text size and the Witness Line Type as shown below.
Step 12: Walls and Columns

Next, select the Horizontal Geometry Method from the **Info Box** palette. Mark the first dimension reference point by clicking on a wall node.

Click on each end node of the wall, then double-click to close the dimension chain. Hitting the Delete key once or pressing the **OK** button in the **Control Box** will also display the **Hammer** Cursor. Place the dimension string by clicking the **Hammer** Cursor at the desired location.

Finish adding dimensions as described on the following floor plan. Remember to change the direction of the dimension (vertical, horizontal and angle) by choosing it from the **Info Box**.
Step 13:
Doors and Windows

Overview

In Step 13, you will learn about the **Door** and **Window** Tools, which create realistic architectural openings in wall elements by inserting special library parts with editable parameters.

Because the **Door** and **Window** Tools behave almost identically, we will often refer to them as the **Door/Window** Tool unless a specific difference needs to be mentioned.

Process to Learn

- Door Tool
- Window Tool
- Parameters for Doors/Windows
- Using the ArchiCAD Library
- Placing a Door/Window
- Viewing a Door/Window
- Creating a New Story
- Copying Elements between Stories

Starting the Step

Use your file from the previous step or open the file named *Step-13.pln* contained in the *Step Files* folder.
Step 13: Doors and Windows

Lower Story

What to Do

1. **Doors and Windows**: Both windows and doors are Library Parts, meaning you can select any library folder and load its contents for further use. All the Library Parts in loaded libraries are available for the current project. Windows and doors can only be added by placing them into an existing wall.
• **Edit Door Settings**: Double-click the **Door** Tool and select a door object from the ArchiCAD Library 70. The door’s location in the ArchiCAD Library 70 is shown above. Configure the appropriate door dimensions and information. Click **OK**.

To set the leaf style, click the fifth button in the **Door Settings** dialog box. Scroll through the list and select the style you would like to use.
• **Place Doors**: The Info Box allows you to select either Edge, Sill or Reveal for your method of construction. You also select to place a door according to its center or edge. Select the appropriate settings.

In the Control Box select the distance marker from the pop-up menu. Set the distance to 2’. Move the Cursor over the edge of the wall. Click on the distance marker that appears. Click once to start door placement then move your Cursor to indicate the inside face of the door and also the swing direction. Click again.

• **Place Windows**: Placing windows involves steps very similar to choosing and selecting doors. Refer to the steps in the door exercise for window settings and placement.
Step 13: Doors and Windows

- **Place a Corner Window**: ArchiCAD will automatically cut both sides of a corner wall when you place a corner window. To place a corner window, double-click the **Window** Tool and select a corner window. Then click on the corner point of the wall and then click on the inner or outer side of the wall.

![Corner Window Settings](image)

Place a Corner Window with the settings shown in the picture above.

![Corner Window Placement](image)

Note: The same window is placed in both of the walls, if we want to modify the windows one by one, the Corner Window Function checkbox should be turned off. With this the windows are editable as singly.
2. **Story Settings**: Choosing the **Stories** in the **Options** Menu opens a sub-menu with commands that allow you to:

- Define the vertical structure of your design, story by story
- Navigate between stories by determining which story is currently displayed
- Move elements and items between them using a special Cut, Copy and Paste

All Story functions are controlled through the **Stories** sub-menu. The Stories defined in the **Story Settings** dialog box are displayed at the bottom of the sub-menu. The current Story is shown with a check mark in the listing and the name appears in the title bar of the **Floor Plan Window** function.

- **Create an Upper Story**: Open the **Story Settings** dialog box under the **Options** Menu. Click in the Name text box and enter *Lower Story*. Next, click **Insert Above** and enter *Upper Story* in the Label text box. Enter 9' for the Height to Next floor.

Now highlight the Lower Story again and click the **Column** and **Slab** icons within the Edit Elements of Selected Story. This will allow us to copy all elements from the Lower Story except for columns and slabs.

Click the **Copy All** button and then highlight the Upper Story and click the **Paste Selected Types** button and click **OK**. The Upper Story is now created. To move between floors, go to the **Options** Menu, **Stories** and select the floor you wish to go to.
3. **Ghost Story**: The Ghost Story will display every element located on another story behind the one that you’re currently working on. Ghost story elements can be snapped to and their settings can be viewed or copied, but can only be edited on their home story. You can either display a given story or the one directly above or below the current one.

- **Go to the Upper Story**: To move to the Upper Story, select **Stories** from the **Options** Menu and select 1. Story.

- **Turn on the Ghost Story**: To view the Ghost Story, select the **Show Ghost Story** from **Stories** in the **Option** Menu or turn it on in the **Stories** dialog.

Drag your Cursor to an element on the Ghost Story. You will notice that the Cursor snaps to it but a warning message appears if it is selected, indicating that is inactive since it is on the floor below.

You can also choose to view the story above or below your current story.

4. **Edit the Upper Story**: Now edit the walls, doors and windows to reflect the design needs for the upper story. Select the **3D Model** Layer Combination.

- **Delete Curved Wall**: Since the curved wall is not required on the Upper Floor, select the **Arrow** Tool and click on the curved wall to highlight it. Then hit the Delete key to erase it.
• **Edit and Extend the Wall**: First click the upper wall with the *Arrow* Tool and highlight it. Now hit the delete key and erase it. Next, select the remaining lower wall and highlight it. Select the *Stretch* command from the *Edit* Menu, click on the outside edge of the wall and drag your Cursor to stretch the wall. Now stretch the wall to the outside point of the opposite wall.

Select the entrance door previously copied from one story lower, delete it, then place a glass wall in its place with the same settings as of the opposite wall. Select and delete the Gypsum interior wall, then stretch the main wall as shown below. Then draw a new Gypsum interior wall.
Step 13: Doors and Windows

- **Edit the Wall Heights**: The exterior walls around the Master Bedroom need to be increased in height for the barrel vault roof. To do this select the four walls, then open the **Wall Settings** by clicking the **Wall** button in the **Info Box**. Set the height of the walls to 11'-0".

 ![Diagram of wall settings](image)

- **Edit the Doors and Windows**: Change the doors and windows to reflect the design for the Upper Story plan. Refer to the directions in the previous part of this step for placement of windows and doors.

 ![Diagram of door and window settings](image)
Step 14:
Stairs and Handrails

Overview
This step will teach you how to create a custom stair using the Stair Tool. StairMaker lets you easily design and construct all kinds of stairs required for ArchiCAD projects by selecting from a set of predefined geometry types, or by drawing the main geometry of the stair and editing parameters.

Process to Learn
• Stair Tool
 Creating a Stair Object
 Selecting the Stair Type
 Setting Flight and Tread
 Defining the Stair Structure
 Selecting the Handrail
• Handrail Object
 Editing a Handrail
 Placing a Handrail

Starting the Step
Use your file from the previous step or open the file named Step-14.pln contained in the Step Files folder.
What to Do

1. **Create a Second Floor Slab**: Before adding the stair we must add the Second Floor slab.

 - **Edit Slab Settings**: Go to the Upper Story. Double click the Slab Tool and set the slab settings to the information as shown below. First set the Floor Plan and Section Attributes and then the Model Attributes:

 Slab thickness: 1'-0" and Slab elevation: 0'-0" to Project Zero: 9'

 ![Slab Section Attribute](image)

 Slab Section Attribute: Wood 45
 Slab layer: Floors

 ![Slab material](image)

 Choose One Story Down from the list as shown below.

 Slab material: Wood-Flooring Strip

 ![Slab material](image)

 - **Draw the Slab**:

 With the slab settings configured, go to the Info Box and select the slab geometry continuous slab option.

 ![Info Box](image)
To create the slab, click the Cursor on the inside edge of the walls. To finish, click on the first point again or click the OK button in the Control Box.

2. **Stair Object**: You can create stairs using two different methods:

 - Using the **Stair** Tool

 - Using the prefabricated stair objects stored in the ArchiCAD Library.

 The **Stair** Tool (an external object tool) is used to place and edit Stair Object library parts into the project, which add a floor plan symbol to the plan, appear in Sections/Elevations, 3D visualizations and appear in quantity calculations. The Stair is created by selecting a stair type from the **Stair Type Selection** dialog.

 - **Set the Stair Settings**: Open the **Stair** Tool dialog and select **Create New Stair** from the pop-up menu.

 Select a straight run stair type with no landing from the **Stair Type Selection** dialog and double-click to edit the stair settings.
Step 14: Stair and Handrails

The dialog opens to the settings for Geometry, Flight and Tread. In the Geometry Settings, edit the stair size as shown. Then select the stair to structure connection button as shown below.

Click the **Stair Structure** button to set the settings for Structure, Attributes and Landing. Set the Structure to a closed stair type and material Attributes describing the stair structure to Wood-Oak.

Next, click the **Tread Settings** button and set the material finish for the treads. Select the Attribute finish as Wood-Oak.

Finally, click the **Railing** button to set the type of stair railing, location of the railing, newel settings and any additional parameters. For this stair, select the Solid Frame with Balustrade from the pop-up Railing Setting.

In the preview, you can select the location of the railing and then you can give its type. Set the railing to be on the left side.

When finished, click the **OK** button. A **Save as** dialog will appear. Save the new stair to your ArchiCAD Library 70/Object Library 70 folder as *House Stair.esm*.
Step 14: Stair and Handrails

The stair will appear in the **Stair Settings** dialog. Now set the stair settings for the insertion point and parameter settings for the 2D drawing. First, click the stair parameter for Dashed Lines Above Break to turn it on.

Next, set the layer to Stairs and click OK.

Finally, rotate the stair by dragging your Cursor inside the stair preview window until the Cursor changes to a rotate symbol. Click your Cursor to rotate the stair as shown. Next, click the corner of the stair where the stair will be inserted. A box will appear marking that corner as the insertion point for the plan. Finally click OK.

Insert the Stair: Now that the stair has been selected and the parameters have been set, we need to place it on our plan. To do this, go to the Lower Story plan by selecting **Stories** from the **Options** Menu. Now move the Cursor to the corner of the window where the stair will be placed. This is the corner where the stair insertion point was defined in the **Stair Settings** dialog. Click to place the stair into the plan.
Now let's see the other method:

Select the Stairs Straight Run 70 element as shown below.

![Stair Options](image)

Set the parameter values as shown in the picture, then place the element on the Floor Plan. Switch on the Show One Story Up checkbox.

Note: This object will be used throughout the rest of the tutorial.

3. **Handrail Object:** The **Object** Tool is used to place and edit library parts that include handrails. This will add a floor plan symbol to the plan, appear in Sections/Elevations and 3D visualizations and appear in quantity calculations.

Edit Handrail Object: To edit the Handrail Object, double-click the **Object** Tool and select Rail Balustrade 70 from the Object Library as shown.
Set the parameters as shown below.

Set the materials to Wood-Oak. Next, select the Stairs layer and click the upper right corner of the handrail to mark the insertion point. Click OK.

- **Place Handrail Object**: Before placing the handrail, select the Diagonal geometry method from the Info Box. This will allow you to insert the object and stretch it to the final length.

To place the handrail, drag the Cursor to the edge of the stair and click. Now drag the Cursor to the point where the handrail will end and click.

Repeat this for the remaining handrails.
Step 15: Roof Plan

Overview

In this Step, you’ll explore the basic techniques used to create roofs by building several roof geometry types using the Roof Tool.

Process to Learn

• Roof Tool
 • Slope Direction and Pivot Lines
 • Types of Roofs
 • PolyRoof
 • Domed Roof
 • Vaulted Roof
 • Pitched Roof Controls
• Displaying Roof Outline
• Trim Walls and Columns to Roof
• Creating a Roof in the 3D Window
• Placing Skylights and Dormers

Starting the Step

Use your file from the previous step or open the file named Step-15.pln contained in the Step Files folder.
Lower Story Roof Plan

What to Do

1. **Dome Roof**: A Dome Roof is created using the **Roof** Tool. The number of strips and segments that make up the dome can be defined in the **Dome Settings** dialog box. Once the dome is created, its parts can be edited as individual pitched roofs, but not as a whole.

 - **Edit Roof Settings**: Double-click the **Roof** Tool and set the roof settings. First set the Floor Plan and Section Attributes.
Next, set the Materials for the roof in the Model Attributes. Set the current layer to the Roof Layer.

- **Define the Dome Roof Outline**: With the Roof Tool selected, select the Dome Roof in the Info Box. With the first click, you define the center of the Dome, the second click marks the beginning and the third click defines the end of the outline.

- **Edit the Dome Settings**: Once you have defined the outline, the Dome Settings dialog box appears. Edit the settings for the dome as shown below.
2. **Pitched Roof**: By choosing the PolyRoof geometry method, you can create equally sloped roofs on any polygonal or curved base.

 - **Select the Polyroof Geometry Method**: With the **Roof** Tool selected, select the Polyroof in the **Info Box**.

 - **Draw the Pitched Roof Outline**: Draw the roof axis point by point along the exterior edge of the wall. When you complete the roof, a **PolyRoof Settings** dialog appears.
Now enter the roof settings into the **PolyRoof Settings** dialog box. Set the Eave Overhang to 1'-0", set the Roof Thickness to 4", the roof height to 9'-0" and the pitch to 5/12. The thickness represents both the roof framing and the roofing system. Click **OK** to create the roof.

Change Hip to Gable Roof: Select the **Arrow** Tool and select the pitched roof you created. To ungroup the roof, select **Ungroup** from the **Tools** Menu. Select the Hip roof to be deleted and hit the Delete key. Now click the **Roof** Tool, select the edge of the roof and stretch the ridge to meet the edge of the wall as shown. Repeat for the opposite Gable roof.

Trim the Wall Tops to the Roof. Select all the walls under the new roofs and go to the **Edit** Menu. Select the **Trim to Roof** command and check **Trim Top**. Click **Trim**.
3. **Barrel Vaulted Roof**: This method allows you to model any form of a roof structure, including the most complex ones. In this exercise, we will model a simple Barrel Vaulted Roof in the **3D Window**.

- **Create a 3D Parallel Projection**: Select **3D Projection Settings** from the **Image** Menu. Create a parallel project similar to the following view.

- **Create the Barrel Vault Roof in 3D**: Click the **Roof** Tool, select the **Edit Mode** button from the **3D Navigation Palette** and select the Barrel Vaulted geometry method from the **Info Box**.

 First open the Magic Wand Settings from the **Tools** Menu and change the Deviation from Curves to 1" from 2".

 ![Magic Wand Settings](image)

 Note: **Clean Wall & Beam Intersections** must be turned **ON** in order to create a Barrel Vaulted Roof in 3D.

 Drag the Cursor to the corner of the wall where the Barrel Vaulted roof will begin. Click and drag the Cursor to define the width of the Barrel Vault. Click at the wall corner and a **Pet Palette** will appear with three editing options. Select the Curved Barrel Vaulted option.
Step 15: Roof Plan

To accurately define the height of the roof, first you have to change the height system to **User Origin**, and after this enter 3'-0" into the **Coordinate Box** and hit the Enter Key.

Now define the length of the Barrel Vaulted Roof by dragging the Cursor the length of the building and clicking on the wall corner to finish.

- **Trim Roof in 3D**: The next step is to connect the wall with the Barrel Vaulted Roof. To do this we need to extend the wall and trim it to the roof. Select the **Arrow** Tool and click the wall as indicated below at left. Double click the **Wall** Tool and change the wall height to 15'-0" to extend it beyond the roof.

With the wall selected, choose the **Trim to Roof** command from the **Edit** Menu. Select **Trim Top** in the appearing dialog. Click the **Trim** button to trim the wall.

Rotate around the model and repeat the same procedure with the opposite wall.
4. **Placing Skylights and Dormers**: Smart skylights are objects that can be intelligently placed within a roof. The skylight object placed on top of a roof will be automatically inserted in the roof and adjusted to the correct roof slope angle, at the appropriate elevation, rotated to the correct angle (parallel with the roof’s reference line) and a hole will automatically be cut in the roof.

- **Place the Skylight**: Skylight objects are stored in the *Dormers and Skylights* folder of the standard ArchiCAD Library. Double-click the **Object** Tool and select Skylight Top Hung from ArchiCAD Library 70. The Skylight’s location in the ArchiCAD Library is shown below. Set the parameters values as shown in the picture. Set the Current layer to Roof.

To place the skylight, you must have a roof. You can insert the skylight object in it in either 2D or 3D. In the **Floor Plan Window**, you place the skylight inside the outline of the roof.

In the **3D Window**, click on the roof plane. ArchiCAD will detect the location of the mouse-click and place the skylight on the roof plane.

You can place the Skylight object to the other roofs by using the multiply command. First select the Skylight object in the **Floor Plan Window** and after this open the **Edit** Menu and select the **Multiply** command.
If you open the 3D Window then you will see the Skylights are placed to the roof.
Step 16:

Building Structure

Overview

This step will teach you to build, move and edit beams and roof framing elements. The Beam Tool creates straight, horizontal construction elements of rectangular profile. You will see how you can generate Truss elements with TrussMaker.

Process to Learn

- Footings
- Beam Tool
 - Beam Settings
 - Placing a Beam
 - Editing Beams
- TrussMaker
 - Creating Trusses
 - Truss Profile

Starting the Step

Use your file from the previous step or open the file named Step-16.pln contained in the Step Files folder.
What to Do

1. **Structural Footing**: The **Slab Accessories** command places the *Footing with Stem wall* object, which can model a concrete footing with stem wall and sill plate.

- **Select the Lower Level Slab**: The **Slab Accessories** command uses the slab as an outline for creating the footing. To select the slab, go to the **Lower Level** by selecting the level from the **Stories** menu option.

Next, select the **Slab** which is situated under the perimeter of the building. The slab will be highlighted by dots at each point on the slab indicating that the slab is selected. Now go to the **Extras** Menu and select **Slab Accessories** from the **Accessories** command.

- **Set the Parameters**: The **Object Settings** dialog box is where you can select the *xs7-footing* object. If you select this then the Interface of the object will appear. This contains two pages, on the first page you can set the plate type, stem wall and footing dimensions, on the second page you will find the parameters for the section attributes. Change the dimensions as required and then click the **OK** button.

Place the object to the Building Slabs layer as shown below.

Note: The parametric object section fills will only be valid if you check the Use Symbol Section Attributes checkbox in the Section Attributes tab page.
2. **Beam Tool**: The **Beam** Tool creates straight, horizontal construction elements of rectangular profile. Beams interact with one another, and with construction elements. Beams can be drawn on the **Floor Plan** or in the **3D Window** and can accommodate holes. In this exercise we will create the floor framing for the Upper Story.

- **Select the Framing Plan Layer Combination**: To set the Framing Plan workspace, select the Framing Plan layer combination from **Layers** in the **Options** Menu.

- **Go to the Upper Story**: To move to the Upper Story, select **Stories** from the **Options** Menu and select Upper Story.

- **Edit Beam Settings**: Double-click the **Beam** Tool and set the **Beam Settings**. First, set the information for the Floor Plan and Section Attributes. Give the Beam a dashed line type and select Wood as the Section Attribute.

 Set the Beam size to 10" x 2" and the top of the framing to 8'-10".

 Set the materials to Pine for all sides of the Beam and select the Framing layer.
• **Create Floor Framing:** Select the Distance Marker option in the **Coordinate Box** and enter 1'-4". Drag the Cursor to the inside edge of the wall. Markers will appear on the wall. With the **Beam** Tool selected, click on the marker and drag the Cursor to the opposite wall until you see a **Checkmark** Cursor form, then click to finish your first beam.

Select the **Arrow** Tool, click on the beam to highlight it and select **Multiply** from the **Edit** Menu. Choose **Spread**, enter 1'-4" for spacing and click **OK**.

Now click the edge of the beam to highlight it and drag the Cursor to the corner at the opposite side of the bedroom.
• **Edit Beam Settings**: Double-click the **Beam** Tool and set the **Beam Settings**. Set the Beam size as 1'-0" x 6" and the top of the framing to 8'-10".

![Beam Settings](image)

• **Create Beams**: With the **Beam** Tool selected, click on the middle of the edge of the column and stretch the beam to the next column. Repeat this for each of the columns.

![Create Beams](image)

When finished, fill in the floor framing similar to the previous exercise.

• **Create Beam Under the Wall**. Edit Beam Settings: Double-click the **Beam** Tool and set the Beam Settings. Set the Beam size as 1'-2" x 9 1/2" and the top of the Beam to 9'.

![Create Beam Under the Wall](image)
Set the materials to Surface-Whitewash for all sides of the Beam and select the Wall-Exterior Layer.

Place the Beam as shown below.

3. **TrussMaker**: TrussMaker allows you to create girder and truss objects for visualization purposes. When properly installed, the TrussMaker hierarchical menu appears in ArchiCAD’s *Extras* Menu.

- **Create a Truss Outline**: Scroll over to an empty space on your Floor Plan. Open the *Line Settings* and set the pen color to pen 1/black. Select the *Line Tool* and select the *Single Line* option. Click on the Floor Plan and enter the length of the line using the *Coordinate Box*, 12'-1" in the X coordinate and 0' in the Y coordinate. Now press Enter.

Open the *Pen Color Palette* again and change the pen color to pen 9/Magenta. Now draw a vertical line for the truss. Select the *Half* mark from the *Control Box* and click to start the line, then enter 2'-8 9/32" for the Y coordinate and press Enter.
Open the **Circle/Arc** Tool and set the pen color to pen 1/black. Next, select the **Circle** Tool and select the 3 point geometry method from the **Info Box**.

Click the end of the horizontal line to start, then click the top end of the vertical line and click the other end of the horizontal line to finish the curve.

Finally, select the **Line** Tool again and add several additional support lines to the truss as shown.

Note: During the Truss creation you can assign sections to pen colors.

- **Select TrussMaker**: To create the truss object from the outline you created, select all the lines you created. To do this, select the **Arrow** Tool and click once on one side of the truss and drag your Cursor across the lines you created. When the Cursor crosses all of the lines, click a second time to select the lines. Now go to the **Extras** menu and select **Create Truss** from TrussMaker.

- **Set the Parameters**: The **Object Settings** dialog will appear displaying options for timber construction, hollow section and rolled steel. Select the **Timber Construction** option and click on the Attributes tab. Enter 11' for the height of the truss. Set the material to Wood-Pine, and set the layer to Roof Layer as shown below.
Next, click the Truss Profiles tab and set the parameters as shown below. When finished, click **Save** and save to your hard drive, to the ArchiCAD Library 70.

After this an object will appear on the 2D plan. Select the **Arrow** Tool and click on the corner of the truss to select it. Then select **Drag** from the **Edit** Menu, click on the edge of the truss and drag it to the column as shown in plan.

Finally, select the **Multiply** command from the **Edit** Menu, define 3 copies and choose **Distribute**. Click at the corner of the truss, drag to the opposite wall and click to finish.
Step 17:
Furniture and Equipment

Overview

In this Lesson, we explore placing, editing and creating furniture and equipment with the Object Tool. This connects you to the ArchiCAD Object Library.

In Step 22, we will learn how to create custom 2D and 3D library parts that can be added to your project library.

Process to Learn

• Object Tool
 - Placing Objects
 - Rotating Objects
 - Multiplying Objects
 - Stretching Objects
• The ArchiCAD Library

Starting the Step

Use your file from the previous step or open the file named Step-17.pln contained in the Step Files folder.
Lower Story Furniture Plan

What to Do

1. **Objects**: The **Object** Tool is used to place and edit library parts within the project, which add a floor plan symbol to the plan, appear in Sections/Elevations and 3D visualizations (if they have a 3D description) and appear in quantity calculations.

 ArchiCAD Library objects range from furniture and bathroom appliances to any building block that you may find easier to define this way than with other Tools in ArchiCAD, such as balustrades, special chimneys, etc.

 The available objects reside in the current ArchiCAD Library. Object library parts consist of:

 - A 2D graphic symbol representing the object on the floor plan
 - A 3D shape appearing in Sections/Elevations and 3D images described in a GDL (Geometric Description Language) script
 - A Properties definition, describing the object and its components

 Go to the Lower Story: To move to the Lower Story, select **Stories** from the **Options** Menu and select **Lower Story**. Switch off **Show Ghost Story**. To do this, select **Show Ghost Story** from **Stories** in the **Options** Menu.
Step 17: Furniture and Equipment

- **Set the Plan to the Furniture Plan Layer Combination**: To set the working environment to the Furniture Plan, select the Furniture Plan layer combination in **Options/Layers/Layer Settings**.

- **Select Furniture and Equipment**: Open the **Object Settings** dialog and select the object from within the ArchiCAD Library as shown:

- **Set the Drawing Information**: Next change the object parameter information to reflect the drawing information required for the object.

- **Select Layer**: Select the appropriate layer for each library part:
 - Furniture objects are placed on the **Furniture** layer
 - Plumbing objects are placed on the **Plumbing** layer
 - Appliance objects are placed on the **Appliances** layer
Step 17: Furniture and Equipment

- **Set Background Fill for Plan Symbol**: Objects can display a graphic fill in the Floor Plan Window. Click the Plan Symbol line in the Parameters box to reveal the plan parameters. If you want to choose another fill, highlight the Background Fill Pen and choose color. After this, highlight the Background Fill Type and click the pop-up symbol to view the Fills.

Now we will use the default settings.

- **Select Insertion Point and Rotate**: Objects can be placed, selected, and fitted to other elements by using object hotspots. Object hotspots are defined in the 2D symbol of the library part. This hotspot is marked with a highlighted rectangle whenever the object appears in the **Object Settings** dialog box.

To rotate the object, drag the Cursor over the object. When the Cursor changes to a **Rotate** Cursor form, click the Cursor to rotate the object.
• **Place the Object**: To position an object, click on the desired position in the floor plan. The insertion point will be stored as the anchor point. You can use numerical input, gravity, rulers or the grids to assist you in positioning objects accurately. This allows you to fit fixtures or furniture to corners, specific positions, or to each other with great accuracy. Fitting an object to a specific position (a chair to a table, for instance) is further helped by the object’s hotspots because the Cursor is sensitive to these points.

2. **Multiply Objects**: Objects can be multiplied using the Multiply command. In this exercise, place the table and then place a chair. Select the chair with the Arrow Tool and choose Multiply from the Edit Menu.

 Next, set the Multiply action to Rotate, the number of copies to 3 and select Increment. When finished, click OK.

 Move the Cursor to the center of the table. A Checkmark will appear. Click on the center to mark the center of the rotation. Move the Cursor to the center of the chair and click to mark the edge of the rotation. Now move the Cursor to the right and three copies of the chair will appear. Move to the point where the second chair is to be placed and click.
3. **Stretching Objects**: To stretch an object, select the object with the **Arrow Tool**, choose **Stretch** from the menu or click on the edge of the object and hold the mouse button down. Now pull away from the object to stretch it.

4. **Place More Objects**: Once you are finished with the Lower Story Furniture plan, select **Stories** from the **Options Menu** and select the Upper Story. Place the upper story furniture and plumbing fixtures using the same steps as described in the previous exercise. Use the upper story plan shown below for location and object names.
Step 18:

Ceilings and Lights

Overview

In this Lesson, we explore placing, editing and creating a 3D ceiling, a 2D ceiling pattern and ceiling lights using the Slab Tool, Fill Tool and Lamp Tool.

Ceiling lights are 3D objects, so when placed on a ceiling, they become both a 2D graphical element as well as an element containing light.

Process to Learn

• Lamp Tool
• Fill Tool
• Creating Ceiling Grids
• Fill Origin
 Link to Project Origin
 Link to Fill Origin
 Display Options
• 2D and 3D Ceilings

Starting the Step

Use your file from the previous step or open the file named Step-18.pln contained in the Step Files folder.
What to Do

Ceilings are created in 3D using the **Slab** or **Roof** Tool. The 3D ceiling, however, does not create a 2D representation for the Ceiling Plan. Therefore, we must also place a Fill pattern to indicate the ceiling for the reflected ceiling plan. This exercise describes how to create and place the ceiling fill pattern and the associated light objects.

Switch off the Grid Display, to do this click **Grid Display** in the **Options** Menu.

1. **Set the Plan to the Ceiling Plan Layer Combination:** Layer combinations allow us to set our workspace to the appropriate plan type, such as the Ceiling Plan, Floor Plan and Furniture Plan. To set the working environment to the Ceiling Plan, select the Ceiling Plan layer combination from **Options/Layer/Layer Settings**.

2. **Fill Patterns:** Fills are geometric patterns that have three view options: **solid**, **bitmapped** and **vectorial**. In a project, all fills are displayed either as bitmapped or vectorial. You can change this option under **Display Options** command in the **Options** Menu.

 - **Change Fill Display** from Bitmap Pattern to Vectorial Hatching for exact ceiling grid representation.

 - **Create a New Fill Pattern for the Ceiling:** Follow the steps in Step 7 for creating Custom Fill Patterns, but in this case, create a 2' square, copy it, and create a new 2' x 2' Grid Fill as shown below. First, Draw a 2' square with the **Line** Tool, select the lines and choose **Copy** from the **Edit** Menu.
Create a new 2' x 2' Ceiling Grid Symbol Fill as shown in Step 7.

- **Draw the New Fill Pattern for the Ceiling**: Double-click the Fill Tool and select the 2' x 2' Grid from the pop-up Fill Settings. Select the Ceiling Fills layer and click OK. To place the fill, click the Magic Wand and click the Cursor inside the Kitchen boundary.
• **Defining the Grid Start Point**: Each fill has a Fill Handle that determines the location of the fill start point and the angle. To adjust the fill, click the **Arrow Tool**, select the edge of the fill and open the **Fill Settings**. Change the fill to **Link to Fill Origin** in the dialog and click **OK**. With the fill highlighted, click the X at the center of the fill and drag the Cursor to relocate the Fill Origin.

3. **Lower Story Lights**: The **Lamp Tool** is used to place additional light sources as library parts into the project. Most of the **Lamp Tool**’s settings, features and techniques are identical to those of the **Object Tool**. The additional Lamp controls affecting their behavior in PhotoRenderings are found in the middle part of the **Lamp Settings** dialog box. You can set the light source’s color by double-clicking the **Light Color** box. The switch next to the light color control allows...
you to define whether the given lamp will be lit or not in the PhotoRendering. The brightness of the light can be set either with a sliding switch, or by entering a number between zero and 100 in the box next to the switch.

- **Select a Light:** Open the Lamp Tool, select lights from the ArchiCAD library, and select the Lamps or Ceiling Lights layer as required.

- **Set the Lamp Object Information:** Next change the Lamp Object parameter information to reflect the drawing information required for the object. Remember to set the height of Lights as you edit the Lamp Settings.

- **Turn OFF Show Light Cone:** The parameter Show Light Cone should be turned off for each light inserted. This feature shows the extent of light in elevations and in the 3D Window but will not be required for this exercise.

- **Place the Strip Lamps and the Recessed Spot Lamps** to the Ceiling Lights Layer. The other types of Lamps should be placed on the Lamps Layer. After you finished to place the ceiling Lamps, set the Layer combination to Furniture Plan.
Place the Lights: Click on the desired light location.

4. **Draw a 3D Ceiling with the Slab Tool**: Now that we have created a 2D representation of the ceiling for the Ceiling Plan, let's create a 3D Ceiling using the **Slab Tool**. To do this, open the **Slab Tool** and set the Model Attributes to Whitewash and the slab thickness to 1/2".

 for the Living Room

 for the Kitchen

Set the slab layer to Ceiling Slabs.

Close the dialog and select the rectangular geometry method. Draw the 3D ceiling for the Kitchen.

After drawing the Kitchen, hold down the Space bar (activate the Magic Wand) and click to the edge of the Gypsum Board Fill to create the ceiling for the Living Room.
5. **Display Options - Changing Door Swings to show Headers**: Under the Options menu, click Display Options and change the Doors & Windows toggle button from Show on Plan to Reflected Ceiling.

6. **Upper Story Lights**: Add lights following steps similar to those used on the Lower Story. Be aware that vertical height placement of lights needs to correspond to the varying roof/ceiling heights.

7. Use **Display Options** under the **Options** Menu to change back to **Show on Plan**.
Step 19: Moldings and Panels

Overview
With the Wall Accessories command, you can place a variety of objects that add details to your walls including different types of moldings, wall panels and wainscot options.

This exercise will also describe how to add these details to your walls and how to customize the profiles of moldings and trim.

Process to Learn
• Wall Accessories Command
 • Interior Moldings
 • Panel Details
 • Creating Trim Profiles
 • Parametric Options

Starting the Step
To begin this step, double-click the file named Step-19.pln contained in the Step Files folder.
What to Do

1. **Select the Walls**: ArchiCAD applies moldings and panels to selected walls. In this exercise we will apply wall panels with molding to the Kitchen walls. To do this, select the Arrow Tool. To select multiple walls, hold down the Shift key while selecting individual walls. Select each of the four Kitchen walls clicking on the inside of each wall.

2. **Apply the Molding and Panels**: Now that the walls have been selected, go to the Extras Menu and select Wall Accessories from the Accessories Menu.

In the Object Settings dialog box select the Moldings and Panels object and set the Section Attributes to the type of molding profiles you would like to use.
On the Section Attributes page of the User Interface you can choose the type of the moldings. Set the parameters as shown below.

Set the Layer to Furniture Layer.

Once finished, click the OK button. The Eyeball icon will appear as your Cursor. Click within the inside of the Kitchen walls. ArchiCAD will build the panels around the room.

Set the Plan to the 3D Model Layer Combination.
Select **3D Projection Settings** from the **Image** Menu and choose **Perspective Settings**. Set the parameters as shown below.

The final panel system will look similar to the image below.
Step 20: Site Layout

Overview

This step will demonstrate several techniques for creating a site. Both the Slab Tool and the Mesh Tool can be used to create a site plan. Additionally, we will also learn how to use the Spline Tool to create topographic lines and transform them into a mesh.

Process to Learn

- Spline Tool
 - Natural Spline
 - Bézier Spline
 - Freehand Spline
- Figure Tool
- Converting Splines to Mesh
- Tools for Creating a Site
 - Slab Tool
 - Mesh Tool
- Level Dimension Tool
- Gravity Tool

Starting the Step

Use your file from the previous step or open the file named Step-20.pln contained in the Step Files folder.
Information

• **Natural Spline method:** This type of curve is defined by placing nodes, which the program automatically connects, thereby generating a smooth custom curve. The angle of the tangent and the shape of the spline generated with it is affected by each subsequent node defined.

• **Bézier Spline method:** These type of curves are more complex in nature, but they allow more accurate reproduction of specific custom shapes. Bézier Splines are defined by nodes, just like Natural Splines, but they also have editable tangent handles on each side of these points. The shape of the Bézier Spline is affected by the direction of the tangent, and the length of each tangent handle.

• The **Freehand** geometry method allows you to draw freehand curves. This is particularly useful to mark up documents. When you start marking up, ArchiCAD automatically activates the **Spline Tool** with the Freehand geometry method.

Selected Splines can be converted from one type to another by clicking the appropriate icon in the **Spline Settings** dialog box.

What to Do

1. **Set the Plan to the Site Plan Layer Combination:** Layer combinations allow us to set our workspace to the appropriate plan type, such as the Ceiling Plan, Floor Plan and Furniture Plan. To set the working environment to the Site Plan, select the Site Plan layer combination from the **Options/Layers/Layer Settings.**
Step 20: Site Layout

2. **Figure Tool**: The **Figure** Tool offers a dedicated Tool and a sophisticated interface with a variety of options for inserting a figure into the floor plan. In this exercise, the **Figure** Tool will be used to insert an image of a site plan contour drawing. This will be used as a background to create a 3D mesh of the project site.

• **Select the Figure Tool**: Go to the Upper Story. Open the **Figure Settings** dialog by double-clicking on the **Figure** Tool. Click the **Open** button to select the site plan image. Select the **Site Figure** picture file from the Step Files/Step Images folder.

• **Edit the Figure Settings**: Enter the size of the site plan in the Figure Size parameters. The dimensions are 121'-11" x 119'-2". Set the anchor point to the lower left corner as shown. Finally, set the layer to Site Terrain and click **OK**.

• **Place the Figure**: Place the site image near the corner of the house as shown. Once placed, select the **Arrow** Tool and click once on the figure to highlight the figure handles.
Select **Drag** from the **Edit** Menu and click on the X mark on the middle left of the figure. Drag the Cursor to the **Project Origin** of the model at the lower left of the house and click to finish.

3. **Spline Tool**: The **Spline** Tool is ideal for generating and defining custom curves with both precision and ease. The Tool is capable of generating an infinitely variable series of custom curves. These curves are commonly defined as Natural Splines, Bézier Curves or Freehand Splines. The Tool gives greater freedom in defining free-form structures and objects without the constraint of the circular Arc Tool.

- **Create Contours with Spline Tool**: First, set the Spline layer to Site Terrain and then using either Natural Splines, Bézier Splines or Freehand Splines create site contours using the inserted **Site Figure** as a drawing guide.

Natural Spline drawing process
Closing Spline

Bézier Spline drawing process
Closing Spline

Freehand Splines are curved line segments
4. **Mesh Tool**: The Mesh Tool allows the creation of an editable continuous surface made up of triangular polygons. This mesh is appropriate for a variety of uses, but the most obvious one is for terrain/site creation.

- **Set up the Site Settings in the Mesh Tool**: Open the Mesh Settings and configure the appropriate options. Set the Mesh layer to Site Terrain. Set the vertical height of the terrain to 0" or -9' to **Project Zero**.

![Mesh Tool Settings](image)

- **Convert Splines to Mesh**: Select the Mesh Tool and choose the rectangular geometry method. Draw a rectangular bounding area around the site figure.

![Bounding Area](image)

Now with the Mesh Tool chosen, select the rectangle you have just drawn and select the Magic Wand Tool. With the Magic Wand, click on the outermost contour/spline. The New Mesh Points dialog box will appear. Choose Add New Points. Reselect the Magic Wand and click on the next contour. Continue doing this until all contours/splines have been converted into mesh points.

![Mesh Points](image)
- **Assign Z-values to the Mesh**: Using the **Mesh** Tool, select the site border. The corners of the contour boundary should appear. Click on any corner in the selected contour. A **Pet Palette** appears with various choices. Select the box with the Z. Now a dialog box appears. Here you can change the entire Z-value of the selected contour or just the individual point.

![Image of Pet Palette](image1)

Continue entering the remaining contours. A smaller **Pet Palette** will appear for the remaining contours.

Continue entering the Z-value to complete the site as shown below. As the Z changes are made, a mesh can be seen taking shape in plan. The actual mesh is created as the Z-values are changed. Initially no mesh is visible because all the contours are at the same height.

![Image of completed site](image2)

- **Modify in 3D**: After the mesh is created, select the mesh in the **3D Window** and select a node from the mesh. The node can be raised or moved to alter the shape of the mesh.

- **Create 3D view**: Check your mesh work. If you want to see all the Model and not just the terrain, select the 3D Model layer combination from the Layer Settings. Go to the **Image** Menu and select **3D Projection Settings**. Make sure you are in the **Parallel Projection Settings** dialog box. Select **Isometric** and click **OK**.

![Image of 3D Projection Settings](image3)
• **Place Site Level Dimensions**: Using the **Level Dimension** Tool, add level symbols to the mesh as indicated. Place on the *Site Plan Text* layer. Do not forget to reselect the Site Plan layer combination, because the Site Plan Text layer is hidden in the 3D Model layer combination.

5. **Gravity Tool**: The **Gravity** Tool allows the user to access vertical (Z) data from existing slab, roof and mesh objects in both the **Floor Plan** and **3D Windows**. When a wall is drawn or an object is placed using the **Gravity** Tool, it will automatically snap to the Z coordinate.

• **Turn Gravity On**: Select the **Level Dimension** Tool from the **Toolbox**. Click on the **Mesh Gravity** button in the **Coordinate Box** and place the level dimensions on the outermost contours/splines as shown below.
• **Check Mesh Z-Value**: Select the **Level Dimension** Tool from the Toolbox. Move the Cursor over the mesh. Notice that as the Cursor moves over the mesh, the Z-value changes. This is the distance from the top of the mesh to the Project Zero. To view the distance to the Current Story, click the pop-up icon in the **Coordinate Box** next to **Project Zero** and change the option to Current Story.
Step 21: Zones and Sections/Elevations

Overview

This step will demonstrate how to set up and assign different Zones to spaces of different use in a building. This allows the project to be later evaluated on a Zone basis.

You will also learn methods of defining section and elevation views on the floor plan and how to update them. These views are part of the Virtual Building, allowing for an interactive communication between all views.

We will also learn how to place notes on the sections and elevations.

Process to Learn

- Zones
- Section/Elevation Tool
 - Creating a Section/Elevation
 - Editing a Section/Elevation
- Links between Plan and Section/Elevation
- Adding Elevation Dimensions
 - Adding Linear Dimensions
- Adding Notes
- Interior Elevations

Starting the Step

Use your file from the previous step or open the file named Step-21.pln contained in the Step Files folder.
What to Do

1. **Zone Tool**: ArchiCAD has the ability to add zone-oriented information to the plan through the zone stamps, spatially marked by the zone fills. Furthermore, the use of zones enables Zone listing, i.e., the evaluation of the project by zones. Zones can be assigned to rooms, groups of rooms or even larger parts of a project. In addition to the zone fill and zone stamp, ArchiCAD features the zone space, i.e., a 3D zone body associated with the Zone that is also visible in 3D views. The availability of zone spaces makes the accurate analysis of both the geometric and quantitative attributes of Zones possible.

 • **Select the Floor Plan Layer Combination**: To set the Floor Plan workspace, select the Floor Plan layer combination from the Options/Layers/Layer Settings.

 • **Edit the Zone Settings**: Before placing a zone stamp, open the Zone Settings dialog box by double-clicking the Zone Tool. Edit the Zone Parameters for the Kitchen as shown.

 ![Zone Settings](image)

 Zone Category: Residential and Recreation
 Zone Name: Kitchen
 Zone Number: 101

 Turn off the Room Materials Codes and Show Ceiling Height parameters. Then turn on the Show Area.
Next, let's set the material type for the 3D Zone surfaces. To do this, click the 3D button to view the Model Attributes.

2. **Set Zone Preferences**: Before placing the Zone Stamp, set the preferences to reflect how you would like area calculations to be shown. Go to the **Options** Menu and select **Calculation Units** from the **Preferences** option.

In the Zones tab page of Preferences dialog box you can set many things for the zones method.
3. **Zone Definition**: There are two zone definition methods. You can either manually draw the contour of a zone or let ArchiCAD automatically recognize a zone surrounded by walls. Once the zone fill is defined, its zone stamp automatically appears on the Floor Plan.

- **Place the Zone using the Recognition Method**: If an area is completely surrounded by walls, ArchiCAD will automatically recognize it as a zone space by placing a zone fill and a zone stamp in it. With the Zone Tool selected, select the wall perimeter recognition method from the **Info Palette**.

Click the cursor inside the Kitchen. A fill pattern will be placed and a **Hammer** Cursor will appear. Click the Hammer where you would like to place the center of the Zone stamp.

- **Place the Zone using the Polyline method**: With this method, you simply draw a polyline (as you would for any other polygon) by clicking at every corner of the zone. You can finish drawing the polyline either by clicking again at the starting point or by double-clicking the last point.

With the Zone Tool selected, select the polyline method from the **Info Box** and enter the Zone information in the **Info Box** for the Entry as follows.

 Zone Category: Residential and Recreation
 Zone Name: Entry
 Zone Number: 102
To begin drawing the outline of the Zone, click at the corner of the wall and drag the cursor to the next corner. Click the next corner and repeat at all corners of the Entry.

Click the first point or click the **OK** button to close. A fill pattern will be placed and a **Hammer** cursor will appear. Click the **Hammer** where you would like to place the center of the Zone stamp.

We will use the same method for the Living Room as we used for the Entry.

Enter the Zone Information.

Zone Category: Residential and Recreation
Zone Name: Living Room
Zone Number: 103

First draw the outline of the main space as shown below:
Next, add a curve to the zone. To do this, select the **Arrow** Tool in the **Toolbox** and select the Zone. With the Zone selected, select the **Zone** Tool. Click the edge of the Zone as illustrated.

In order to refresh the content of a zone stamp for the modified zone, you have to select the Zone and then the **Update Zones...** command from the **Tools** Menu.

A dialog box appears with feedback on how zones have changed and includes controls for additional modification.
Clicking on **Update Selected Zones** button applies the changes immediately to the zone stamp.

4. **Viewing a Zone in 3D**: To view zone spaces in 3D, go to the Image menu, choose Select Image Items and make sure that only the Zone icon is selected.

Open the **3D Projection Settings** dialog box and select Dimetric Axonometry from **Parallel Projection Settings**. The 3D Window will appear with a shaded massing view of the zones.
To view the shaded Zone surrounded by the construction elements in wireframe, choose the **3D Window Settings** from the **Image** Menu. In the dialog, select the **Best** option from the **Contours** pop-up list.

Go to the **Image** Menu, choose **Select Image Items** and check **All** for **Element Types to Show in 3D**.

To see everything, choose the 3D Model layer combination.

Note: Elements hidden by the zone shape are not displayed at all.
5. **Section/Elevation Tool**: This Tool is used to generate elevations and sections from the model by placing section symbols on the floor plan. The **Section/Elevation** Tool places standard section/elevation symbols on the floor plan with optional breakpoints, including markers with identifiers and a section line. Every section symbol is automatically linked to a new Window in which the section/elevation model can be displayed. In the **Section/Elevation Settings** dialog box can be set which stories of your project the Section/Elevation symbols appear on.

6. **Set the Plan to the 3D Model Layer Combination**: Layer combinations allow us to set our workspace to the appropriate plan type, such as the Ceiling Plan, Floor Plan and Furniture Plan. To set the working environment to the 3D Model, select the 3D Model layer combination from the **Layers** command in the **Options** Menu.

 • **Edit the Section/Elevation Settings Dialog**: Before placing the Section/Elevation mark, open the **Section/Elevation Settings** dialog by double-clicking the **Section/Elevation** Tool. For the name, enter **Section**, and set it to the Sections layer.

 Next, set the section line to show on all stories. To do this, select **All** from the **Show Section Line on Stories** pop up button.

 This option also allows you to select **Home** if you want the section line to appear only on the story it was created on.
The section line can also appear on specific stories only by defining the **Horizontal** or **Vertical Range**, which will both limit the width or the height of the section cut as well as control where the section mark appears. Select Infinite from Horizontal and Vertical Range.

- **Place the Section/Elevation Marks**: Go to the Lower Story. To start a section line, click with the mouse to draw a rubberband on the floor plan. To finish drawing the section line, either click twice at its endpoint or click the **OK** button in the **Control Box**. Then click the **Eye** Cursor form on the side of the section direction.

- **Viewing the Section/Elevation**: You can view your section/elevation by choosing its name from the **Window** Menu’s **Sections/Elevations** Sub-menu. The elements displayed are the same as would appear in the **3D Window**. In other words, layer visibility, selection and the settings of the **Image/Select Image Items** dialog box will all be effective.

- **View a Section/Elevation**: Choose the section or elevation name from the **Window** Menu’s **Sections/Elevations** Sub-menu. The chosen section/elevation will appear in a new Window.
8. **Editing the Section/Elevation**: By default, Section/Elevation Windows are a model type and are automatically linked to the Virtual Building. Any change made on the floor plan will appear in the Section/Elevation Window when activated and likewise any changes to the Section/Elevation Window will be automatically updated on the Floor Plan Window.

- **Edit an Element**: Go to the Section/Elevation Window and select a drawing element or object.

When the object is selected, choose Drag from the Edit Menu and drag a window to a new location. Now go back to the plan to see how the changes you made are translated to update the Floor Plan Window.

After seeing the changes, go back to the Section/Elevation Window and drag the window back to its original location. You can place the window to its original location in the Floor Plan Window, but in this case the window sill does not change to its original size. You have to resize it manually by selecting the window and changing the sill height in the Window Settings dialog box.
• **Add Linear Dimensions**: First, open the **Dimensions Settings** dialog box and configure the settings. Set the Dimensions Setting layer to Elevation and set the Font Height to 3pt.

![Dimensions Settings dialog box](image1)

Finally, select the vertical geometry method from the **Info Box**.

![Info Box](image2)

Next, place target nodes at the points where dimensions are required. When all the target points are placed, double-click to close the Dimension Chain.

![Dimension Chain](image3)

• **Add Elevation Dimensions**: You can add elevation dimensions for elevations and sections. First open the **Dimension Settings** dialog and select the **Elevation Dimension** option. Change the marker size to 5pt.

![Dimension Settings](image4)
Step 21: Zones and Sections/Elevations

Then, place targets at the locations to describe the elevation heights and double-click to place the dimensions.

Finally, select the middle Elevation Dimension and change its direction in the **Dimension Settings** dialog box.

For practice, you can add the rest of the linear and elevation dimensions as described on the following section plan.
• **Add Notes and Drawing Elements**: You can add both notes and drawing elements such as drawing symbols, lines, circles and fills to a section and elevation. To add a note, open the Section/Elevation Window and select the Label Tool. Set the Label Settings to the Elevation layer. Set the Font Height and arrow size to 3pt.

Click the point where the arrowhead is to be placed. Draw a rubberband from the starting point and click where the note is to be placed.

Additionally, symbols from the ArchiCAD Library can be added to the Section and elevation. The process is the same as the floor plan environment. Open the Object Settings dialog and select a symbol. In this case, select the Detail Marker 70 symbol from the Graphic Symbols 70 folder.

Set the size to 3'x3' and place the symbol where the detail needs to be marked. After placing it, select it and set the layer to Elevation.

9. **Create Interior Elevations**: The Interior Elevation command allows you to create interior elevations of Zones. The Interior Elevation hierarchical menu appears in the Tools Menu. The interior elevations will appear in a new listing type Window from which you can copy and paste them on the floor plan or in a Section/Elevation Window.
Step 21: Zones and Sections/Elevations

- **Place an Interior Elevation Marker**: The Interior Elevation Marker is an Object type library part. A number of markers are available in the *Interior Elevations* folder of the standard ArchiCAD library. To place a marker, double click the **Object** Tool and select the **Interior Elevation Marker** as shown. Close the **Object Settings** dialog box and place the marker in the Kitchen.

 ![Interior Elevations](image)

- **Create the Interior Elevations**: To create the interior elevations, go to the **Tools** Menu and select **Create** from the **Interior Elevations** command.

 ![Create Interior Elevations](image)

The interior elevations will be created as follows:

![Interior Elevations](image)
Step 22:
Creating Library Parts

Overview
In this step, you will learn how to create a customized 2D and 3D library part as well as how to save as a library part.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn
• Creating a 2D Library Part
• Creating a 3D Library Part
• Library Part Window
• 2D Symbol Window
• 3D Window View
• Save Special - Library Part

Starting the Step
Open the file named Step-22.pln, or open a new ArchiCAD file with the default settings. To do this, hold down the Alt key (Windows) or Option key (Macintosh), then go to the File Menu and choose New and reset. Save the Untitled document as Creating Objects.
What to Do

1. **Library Parts**: Doors, windows, objects, lamps and zones are Library Parts defined by a 2D symbol that will appear in projects, a 2D description that defines this symbol, and a 3D description that defines the 3D model of the item. In addition, you can attach technical data to the item, which will be processed when the List Components command is performed.

 - **Create a 2D Object**: With the new ArchiCAD file open draw a circle and two lines in plan to represent an electrical symbol.

 Select all of the electrical symbol items and select **Save Special** and **ArchiCAD Object** from the **File** Menu. When the **Save** dialog box appears, choose the folder where you want to save the new object, name the new ArchiCAD library part **Electrical Symbol** and click **Save**.

 The electrical symbol is now a new library part in your library. To view it, select the **Object** Tool and open the **Object Settings** dialog.
Create a 3D Object: Draw a table and follow the same steps for creating a 2D object. Once the object is saved, it will contain a vertical parameter and a preview in side and 3D views. Table size is 4' x 4" x 2'-6". Tabletop thickness is 3".

Create a Custom Window: ArchiCAD Tools such as the Wall and Slab Tool can be used to create more than just walls and slabs. Think of these tools as vertical and horizontal 3D drawing tools. The following example will show how these tools can be used to create a custom window.

Open a new ArchiCAD file by selecting **New** from the **File** Menu. Next, open the **Wall Settings** dialog and set the width and height of the wall parameters to the frame size of the window. Frame Size is 1 1/2'' x 4''. Now draw a simple window with the measurements 5'-0" x 6'-0" as shown and with two mullions. Mullion size is 1" x 3".

Now open the **Slab Settings** dialog and set the slab parameters to match the width of the glass and to a glass material. Draw the glass slab inside the frame as shown. Glass width is 1/4".
Create a 3D parallel projection as a **Side view** and move the camera so that it is a view from the top of the window (azimuth = 90).

From the **3D Window**, Select **File/Save as**. In the **Save** dialog box choose the ArchiCAD Window file from the **Files of Type**, choose the folder where you want to save the new window object, and name the new ArchiCAD Library Part 'Custom Window', and click **Save**. A new dialog, **Save as Library Part**, will appear. From the **3D Description Format** select **Editable GDL Script**. In this case the window will be editable. Your new window can now be accessed with the **Window** Tool.
PART FOUR: VISUALIZATION

23. MATERIALS
24. RENDERING SETTINGS
25. 3D CUTAWAY
26. VIRTUAL REALITY
27. PERSPECTIVES & ANIMATIONS
28. SUN STUDY
29. WORKING WITH PHOTOGRAPHS
Step 23: Materials

Overview
This step demonstrates how the Materials dialog box allows you to determine the characteristics of the materials used for the construction elements. The exercise will create a new material and edit an existing material as well as assign a material color, 3D fill pattern and texture.

Process to Learn
• Materials Settings
 Reflection
 Transparency
 3D Hatching
• Textures
 Texture Library
• Color

Starting the Step
Open the file named Step-23.pln contained in the Step Files folder.
What to Do

1. **Materials**: Choosing **Materials...** from the **Options** Menu to display the **Materials** dialog box allows you to determine the characteristics of the materials used for the construction elements.

The Tool Settings dialog boxes for each 3D drawing tool allow you to select materials for ArchiCAD construction elements. Shaded images in the **3D Window** will use material colors only, but when your plans are rendered using the **PhotoRendering Projection** command (**Image** Menu), all the characteristics of the materials are used in the rendering process. The **Materials** dialog box contains controls for every aspect of ArchiCAD surface materials.

- **Open the Materials Settings**: Clicking the **Expert...** button expands the **Material** dialog box to include a large number of controls for reflection, transparency and emission attributes. You can also choose options for 3D Hatching and Textures associated with either standard or custom materials.

- **Create New Materials**: Click the pop-up button in the upper right corner and pick Paving-Asphalt from the materials list. With this material selected, click **Rename...** and change the name to Cobblestone.

- **Set a Materials Color**: Double-click the color and change to a medium gray. The color picker dialog is different for the Windows and Macintosh systems.
Step 23: Materials

- **Set a Materials 3D Hatch Pattern**: In the 3D Hatching area, click the pop-up button and pick the Cut Stone fill pattern. Fill names are organized in alphabetical order.

- **Set a Materials Texture**: Click the Edit Texture button and select the texture Stone 3 in the ArchiCAD Library 70 using the Search button:
 - Textures 70
 - Stone 70
 - Stone 3
Material Surface Type: Select a material type from the Type pop-up menu where several surface characteristic options can be found. Select Matte as the surface type for Cobblestone.

Selecting a material type will automatically configure the Reflection and Transparency settings. You can also manually set these controls to a custom material setting.
Step 24:

Rendering Settings

Overview

ArchiCAD has several types of rendering settings. This step teaches you how to apply these settings, when to best use them and what effect the different options create.

Process to Learn

- 3D Window Settings
- Sun Settings
- Select Image Item Settings
- Photorendering Settings
 - Effects
 - Image Size and Background
 - Brightness and Imaging
 - Memory Settings

Starting the Step

Use your file from the previous step or open the file named *Step-24.pln* contained in the *Step Files* folder.
Information

ArchiCAD has two environments for rendering and viewing your 3D model.

1. **3D Window** - The **3D Window** is considered the working environment for your project. It is an interactive window that can be viewed and edited.

2. **PhotoRender Window** - The **PhotoRender Window** is considered to be the final rendering of a selected view in your **3D Window**. This rendering is higher quality and can take more time to render than the **3D Window**.

What to Do

1. **Select Image Items**: Choosing the **Select Image Item** command from the **Image** Menu displays a dialog box from which you can select the ArchiCAD construction elements to be rendered in the **3D Window**.

 - **Change Element Types to Image**: Marquee an area of the floor plan with the **All Floors** construction methods’ **Marquee Tool**. Open the **Select Image Items** dialog box in the **Image** Menu. Uncheck the window and door icon image item, and Go to **3D Projection Settings** or directly to the **3D Window** if you already have a view set up for your model. Look at the rendering after completion and notice that the doors and windows are not present in the 3D image.

2. **3D Window Settings…**: Choosing the **3D Window Settings…** command from the **Image** Menu displays a dialog box that allows you to define the...
Step 24: Rendering Settings

characteristics of the image in the **3D Window**. The settings you can make are categorized as follows:

- Methods, where you can set different parameters of Hidden Line and Shaded 3D Models.

- Effects, where you can specify the use of 3D hatching, shadow-casting and transparency in shading.

- Display, where you can set the size and background of the **3D Window**, as well as line weight used in the display.

• Change the Rendering Method: Open the **3D Window Settings** dialog box in the **Image** Menu. Change the Hidden Line Mode from Analytic to Raster. Render a Hidden Line image. Notice the speed difference, but also the change in line quality and accuracy.

![Methods](image1.png)

Next, change the Shaded Mode to **Raster** and the Contours from **Best** to **Off**. Notice the lines at the edge of the shaded model.

![Shaded Mode](image2.png)

• Change the Rendering Effects: Turn Vectorial 3D Hatching and Transparency in Shading from **Off** to **On** and render an Analytic Shaded image. Next, turn Vectorial Sun Shadows from Off to Contours On. This will create a shadow with an outline.

![Effects](image3.png)
Note: Tuning on any of the Rendering Effects will add additional calculation time to a shaded image.

3. Sun Settings: Clicking the More Sun... button in the 3D Projections Settings dialog gives access to the Sun sub-dialog box for a series of more sophisticated sunlight settings.

- Change Sun Settings: Open 3D Projection Settings in the Image Menu. Click on the More sun... button. Change the Intensity of light to 20 percent. Change the Ambient Light to 60 percent. Change the color of the sunlight to red. Change the time of day, and then produce a PhotoRendering and observe the results. Go back and make readjustments and render another image; notice the changes.

4. PhotoRendering Settings: The PhotoRendering Settings sub-menu contains four commands. These in turn access dialog boxes that contain different settings for the photorendering process. The four commands are also available from the top of each of the four dialog boxes. The following sections describe these dialog boxes.
Step 24: Rendering Settings

- **PhotoRender Effects**: This dialog box controls the rendering quality of the final image. One also can control the presence of the various lighting effects in the final image that can affect quality, realism, and rendering speed.

 Change Effects settings: Select **Flat Shading** from the Method section in the **PhotoRendering Settings**, turn **Antialiasing Off**, and disable Emission and Shadow casting. Render a PhotoRender Projection.

Now go back and select the **Best** option for Method and Antialiasing. Enable all the Effects, Light sources, and Shadow casting. Render a PhotoRender Projection. Notice the difference in speed and quality of the two renderings.
• **PhotoRender Size & Background**: In this dialog box you can set the attributes of the background for your rendered 3D model.

Change the colors and size: Click on **Sky Color**. Select a color for the sky. Click on **Ground Color**. Select a color for the ground. Click on the **Pixel** popup menu and select the proper units (pixel, cm or inches) for the size of your window. Select 72 dpi for Resolution. Before rendering a PhotoRender Projection, click the **Size to 3D Window** button. This will size the rendered image to the same size as your 3D Window.

Select a Background Picture: Next, click the **Picture** button and select an image from the Background Images 70 library in the ArchiCAD Library. A preview of the picture will appear. Place the Cursor in the preview to move the picture, click the **Size to 3D Window** button and render a PhotoRender Projection.
• **PhotoRender Brightness**: This dialog box gives you choices regarding exposure and provides you with the option of making partial PhotoRenderings.

• **Change exposure and Brightness settings**: Create a PhotoRendering from a previous step. After the rendering is done, go to the **PhotoRendering Settings** under the **Image Menu** and select the Brightness tab. Move the Image Brightness slider to the left (Bright). Click on **Apply**. Look at the image. Move the slider to the right (Dark). Click on **Apply**. Compare the effects. Select different settings from the Overexposure correction area. Click **Apply** and notice the effect on the image.
• **Memory Settings**: In the Memory dialog box you can see information about the size of the available memory. ArchiCAD can also make an estimate of the amount of memory that is needed for your photorendered image, if you click the **Estimate Complexity** button.
Step 25:

3D Cutaway

Overview

This step introduces you to the option of cutting away your model in 3D. This allows you to create 3D cutaway sections, plan views and details of your model.

Process to Learn

• 3D Cutting Planes
• 3D Cutaway Option
• 3D Section
• 3D Window Settings
• Section Cut Color
• Clear All Cutting Planes
• Creating a Cutting Plane

Starting the Step

Open the file named Step-25.pln contained in the Step Files folder.
Information

3D Cutting Planes: Choosing the 3D Cutting Planes... command displays the 3D Section dialog box. By using 3D sections, you can get either ordinary cross sections or special sections to visualize the project in new ways.

3D Cutaway: 3D Cutaway is an imaging mode in ArchiCAD. If it is active, the cutting places defined in the 3D Cutting Planes dialog box are applied to the model every time it is rebuilt.

Note: that 3D cutting planes can only be defined and the cutaway performed with the 3D Window active.

What to Do

1. Create a 3D Projection: Select the 3D Model layer combination. Open the 3D Projection Settings dialog box from the Image Menu. Create either a Perspective or Parallel projection.

2. 3D Cutting Planes: The three basic orthogonal representations of your building (front, side and top) are displayed in the 3D Section dialog box. This command is not available if the 3D Window is closed or empty.

• Create a Cutting Plane: Open the 3D Cutting Planes from the Image Menu. Draw a line through the front view. This line represents a cutting plane perpendicular to the given orthogonal view. The Eyeball Cursor appears after you have drawn each line, prompting you to click on the side of the line you would like to remove. The parts of the project views displayed as shaded will be removed. Finally, draw a line through the top view also.
• **Select the Color Highlight for Cut Surfaces**: The Fill Material & Edge Pen of Cuts controls allow you to highlight the edges and surfaces of elements cut in 3D Sections. You can create special section cut surfaces with different colored edges, as well as cut surfaces having custom material definitions.

To create such highlighting, click the **Custom** radio button and choose a material from the pop-up menu and/or a pen from the palette.

3. **3D Cutaway**: To activate 3D Cutaway, select its Menu item. A **Checkmark** placed before the name of the command indicates that it is active. To deactivate 3D Cutaway, choose the command again and the **Checkmark** disappears.

4. **View the 3D Cutaway from Different Views**: Create a Parallel and Perspective projection. Activate the 3D Cutaway command.
5. **Clear All Cutting Planes**: If you want to remove all cutting planes, click the **Clear All Cutting Planes** button, then **Rebuild**, and finally choose the **3D Cutting Planes** command.

Hint: The number of cutting possibilities offered here is much greater than you generally need in architecture. You can, however, make good use of them when you are dealing with non-orthogonal details or when showing material cutaways.
Step 26:
Virtual Reality

Overview

This step allows you to create a navigable object or scene taking advantage of virtual reality technology. For a VR Object, you define a spherical path for the camera and navigate along the sphere.

For a VR Scene, you create a navigable panoramic scene. You define one or a series of cylindrical panoramas to be viewed in the virtual reality player application. This allows you to stand at a single point and turn 360 degrees to view the building space of your model.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn

• VR Object Tool
• VR Scene Tool
• Placing a VR Object or Scene
• Creating a VR Movie
• VR Settings
• Compression

Starting the Step

Open the file named Step-26.pln contained in the Step Files folder.
What to Do

1. **Virtual Reality Object**: ArchiCAD allows you to create navigable objects taking advantage of virtual reality technology. You define a spherical path for the camera along which sphere or part of a sphere the viewpoint can optionally be positioned and navigated. The navigable object can be viewed in the QuickTime® VR MoviePlayer application.

 - **Define the VR Object**: Select the 3D Model layer combination. Open the **Camera** Tool from the **Toolbox**, select **VR Object** tab page and enter the object information as indicated. Enter the Radius as 50' and Center Z as 5'. The remaining parameters can remain at their default settings.

 ![VR Object Settings](image)

 - **Place the VR Object**: A click on the Floor Plan determines the center of the VR Object, which will show both the initial direction of view and the extent of view. Additional clicks on the floor plan will not create new cameras; you can only have one camera active at a time.

![Floor Plan with VR Object](image)
• **Configure the Rendering Settings**: Open the **Photorendering Settings** or **3D Window Settings** from the **Image** Menu to set the effects and settings, depending on which source you choose.

• **Create the VR Object**: Choose **Create VR Object** from the **Image** Menu. Choose options as desired:
 - **Source**: 3D Window or Photorendering Window
 - **Result**: Choose Millions of Colors for the VR Object and the Image compression. (Image Compression is supported only by QTVR 2.0 Engine.) Graphisoft recommends using Cinepak compression.

 Note: You must have the appropriate QuickTime VR Extensions properly installed on your computer in order to take advantage of this option.

The better the image quality, the longer it will take to process. **Save**, and when ArchiCAD is finished processing, open the VR Object file. To open the VR Object, go to the location you choose to save the VR Object file and double-click on the file.

2. **VR Scene**: ArchiCAD allows you to create navigable panoramic scenes using virtual reality technology. You define one or a series of cylindrical panoramas to be viewed in the virtual reality player application.

• **Setup the VR Scene**: Select the 3D Model layer combination. Open the **Camera** Tool from the **Toolbox**, select **VR Scene** tab page and enter the object information as indicated.
• **Place the VR Scene Nodes:** A click on the Floor Plan places the center of the VR Camera.
 - Panorama 1: First click places the camera and the second click defines view direction.
 - Additional Panoramas: Single click
 - Connecting Panoramas: Click center of camera to be connected to and click again to place camera or (with **Camera** Tool still selected) draw a line between center nodes of unconnected cameras.

• **Configure the Photorendering Settings:** Open the **Photorendering Settings** to set the effects and settings.
Create the VR Scene: Choose **Create VR Scene** from the **Image** Menu. First choose which type of VR Scene to render. ArchiCAD offers three types:

- **VR Scene** - Saves all panoramas defined on the plan and includes a control file to navigate between panoramas.

- **Panoramas** - Saves only individual panoramas and does not include the control file.

- **Pictures** - Saves pictures of the panoramas for editing as PICTs.

Select the VR Scene. Next enter the final rendered image size of the VR Scene. The parameters are measured in pixels. The Image Height and Image Length refer to the rendering size while the settings for the Window Size in VR Player refers to the size of the VR viewing window. The View Cone is the angle of view of the camera and the Initial View is the angle of the camera when the VR first starts.

Finally, choose Millions of Colors for the VR Object and the Image Compression (image compression is supported only by QTVR 2.0 Engine). Graphisoft recommends using Cinepak compression. The better the image quality, the longer it will take to process.
Save, and when ArchiCAD is finished processing, open the VR Scene file. To open the VR Scene, go to the location you choose to save the VR Scene and double-click on the file.
Step 27:

Perspectives & Animations

Overview

In this Lesson, you will learn how to define a Fly-Through Path for an animation using the Camera Tool and how to create and store single point perspectives.

Process to Learn

• Camera Tool
 Placing a Camera
 Placing Multiple Cameras
• Camera Settings
• Path Settings
• Creating an Animation
• Compression

Starting the Step

Open the file named Step-27.pln contained in the Step Files folder.
What to Do

1. **Placing a Camera**: Select the 3D Model layer combination. Choose the Camera Tool in the Toolbox. Select the Camera type tab. Set the camera settings; Camera Z is the eye level of the camera, and Target Z is the height of the target to be viewed, and the View Cone is the camera view cone angle.

 ![Camera Tool](image)

 Your first click on the Floor Plan places a camera with default parameters. Draw a rubberband line to set the view direction, and click again to define the target's position in 2D. The target elevation becomes a default elevation value. When the operation is completed, the sun symbol appears with default settings.

 ![Camera with sun symbol](image)

 To change the camera direction, sun direction or camera information, select the camera with the Arrow Tool. With the camera selected, activate the Camera Tool and drag the highlight points or change the Camera Settings and click Apply.

 ![Camera settings](image)
2. Creating an Animation: An animation is created and modified in the same way as the placing a single camera.

- **Setup the Camera**: Select the Camera Tool from the Toolbox and make sure that the Camera tab page is chosen in the Camera/VR Settings dialog box.
- **Place the Cameras along the Animation Path**: Place the cameras after each other, as shown below. (Drawing a rubberband line on the plan helps position cameras.)

After placing the cameras, a Fly-Through path will be defined automatically. If you want to change the settings of the cameras separately, double-click on the Camera Tool and browse between the cameras.
• **Set Animation Path Settings:** Click the Path... button. Set the Motion Controls, the Display Option and the number of the Inbetween frames as indicated.
Step 27: Perspectives & Animations

Each camera you add to the path is considered a keyframe. ArchiCAD can interpolate between keyframes to create Inbetween views, which produce a smoother animation. But increasing the number of images requires more time to create and more disc capacity to store.

4. **Create Animation**: Go to the **Image Menu** and select **Create Fly-Through**. Choose options as desired:

- **Source**: This option allows you to toggle between the **3D Window** or **Photorendering Window** option and to define which frames are rendered.

- **Result**: With this option, choose the number of colors for the animation and the compression. Graphisoft recommends using Cinepak compression. The better the image quality, the longer it will take to process.

![Create Fly-Through](image)

Save, and when ArchiCAD is finished processing, open the Animation file. To open the Animation, go to the location you choose to save the Animation and double-click on the file.
Step 28: Sun Study

Overview

This step uses the Create Sun Study... command to generate a series of normal or photorendered 3D pictures defined by the current 3D Projection Settings, the current 3D Window or Photorendering Settings respectively, and the Sun position settings defined in the Create Sun Study dialog box, similarly to the Create Fly-Through command.

Process to Learn

• Sun Settings
• Setting Camera View
• Create Sun Study
• Compression Options
• Source Options
• Camera Settings

Starting the Step

Open the file named Step-28.pln contained in the Step Files folder.
What to Do

1. **Set up the Sun Study**: ArchiCAD allows you to generate a series of normal or photorendered 3D pictures defined by the current **3D Projection Settings**, the current **3D Window** or **Photorendering Settings**, and the Sun position settings defined in the **Create Sun Study** dialog box. These generated images mimic the effect of the sun and the resulting shadows over a period of time on the modeled building.

 - **Set up the Camera**: Select the 3D Model layer combination. Open the **Camera** Tool from the **Toolbox**, select the **Camera** tab page and enter the camera information and Sun settings as indicated.

 - **Place a Camera on the Plan**: Place the camera as indicated on the floor plan. For more information on placing a camera, see **Step-27.plt**. Once placed, select the **Arrow** Tool and select the placed camera with the Cursor as shown.
2. **Set PhotoRender Settings**: Before we create the sun study, go to the **Image Menu** and set up the **PhotoRender Settings** for the final rendering.

3. **Create the Sun Study**: Go to the **Image Menu** and select **Create Sun Study**.
 - **Source**: This option allows you to toggle between the **3D Window** or **PhotoRendering Window** as the rendering source and to define the date and time for the Sun Study.
 You can define a particular day of the year for the previously set geographical location in the upper left part of the dialog box. Use the pop-up menu to select the month and time of day in the text box or use the pop-up button to advance up or down. Use the radio buttons in the middle left section of the dialog box to define a full Sun Study from sunrise to sunset for the selected day or specify a part of the day for the Sun Study.
 - **Result**: With this option, choose the number of colors for the animation and the Image Compression. Graphisoft recommends using Cinepak compression. The better the image quality, the longer it will take to process.
• **Save**, and when ArchiCAD is finished processing, open the Sun Study file. To open the Sun Study file, go to the location you choose to save the Sun Study and double-click on the file.
Step 29:
Working with Photographs

Overview

When using a scanned photograph as the background of your rendering, you may want to render onto the photograph and fit your ArchiCAD model into the photograph’s environment.

This exercise will also introduce the concept of aligning a photograph with your ArchiCAD model and how to import a photograph into ArchiCAD.

Process to Learn

- Importing a Photograph
 - Figure Tool
- Matching the Model to the Photograph
 - Align View Command

Starting the Step

To begin this step, double-click the file named *Step-29.1.pln* contained in the *Step Files* folder.
What to Do

1. **Matching the Model to a Photograph:** When using a scanned photograph as the background of your rendering, you may want to fit your ArchiCAD model into the photograph’s environment. In the photorendering made from the Camera placed by this command, the perspective of your building in ArchiCAD will match the perspective of the background.

 - **Select and Place a Picture:** Opening the file, a floor plan will open that appears as follows.

 ![Floor Plan Image]

 Open the **Figure** Tool and select the **Open...** button from the dialog. Select the scanned image from the Step Files/Step Images folder called Hall.jpg. A preview of the image will appear in the **Figure Settings** dialog. Resize the image to 34' x 50' and select the upper left anchor point.
Now place the scanned image on the Floor Plan as shown below:

Next, select the **Arrow** Tool and click on a corner of the placed image to highlight it. Now go to the **Image** Menu and select the **Align View**... command.

Now drag your Cursor to the first point on the plan that you wish to align the view with as the diagram shows below, click the upper and lower points of the wall you are aligning the Floor Plan with.
Once completed, repeat the same steps for the second set of points.

When the last point is placed, the **Align View** dialog will appear asking for the heights of the points you specified. In this case, enter 10'-6" for the left point height and 8'-0" for the right point height. Finally, a camera will appear on the floor plan that is aligned with the photograph.

Before viewing the furniture in the final photograph, set the photograph as the picture background to be rendered using the **Image Size & Background** command from the **PhotoRendering Settings** as we did in the previous...
Step 29: Working with Photographs

exercise. Choose the Hall.jpg photo from the Step Files/Step Images folder, and set the Resulting Image option to 326 x 480.

Next, set the size of the 3D Window to the same size as the photograph. To do this select the 3D Window Settings command from the Image Menu. Set the Window Size in Pixels to 326 x 480.

Select the required objects (chairs, table, carpet) and finally choose PhotoRender Projection from the Image Menu. The resulting image will be a composite of the furniture rendered onto the photograph.

Note: You can check this step in the file named Step-29.2.pln.
PART FIVE:
PROJECT INFORMATION

30. BUILDING INFORMATION - CALCULATIONS
31. DOOR AND WINDOW SCHEDULES
Step 30:

Building Information - Calculations

Overview

Step 30 will demonstrate how to list the project information you assigned to elements and objects. We will review several types of list options provided with ArchiCAD and discuss how you can customize these templates for your specific project use.

Process to Learn

- Descriptions of List Schemes
- List Elements
- List Components
- List Zones
- Calculate Menu Appearance

Starting the Step

Open the file named Step-30.pln contained in the Step Files folder.
Information

ArchiCAD’s integrated Virtual Building construction database can reveal the number of elements in a project, the elements’ spatial disposition or the quantity of the elements’ components through the complex feature set of the Calculate Menu. Having analyzed project data and relevant database information, ArchiCAD can generate three fundamental types of calculation reports:

1. **Element List Schemes**: The Element Lists are best used for creating schedules and inventories, and to display the parameters of construction elements in a project. Parameters, components and descriptors can also be included in the lists.

2. **Component List Schemes**: The Component Lists are generated when bills of materials, quantity takeoffs or price lists are required. Typically in these reports, Component type properties are summed up and displayed; however, certain element parameters can also be listed.

3. **Zone List Schemes**: Zone Lists are generally used to create room schedules and finish schedules. Zone Lists can include parameters of zones and related construction elements.

What to Do

1. **Select the 3D Model Layer Combination**: To set the 3D Model workspace that will turn on all the 3D elements, select the 3D Model layer combination from the Options/Layers/Layer Settings.

2. **Create a Listing for Each Scheme**: Learn what elements, components and zone information is stored in your Virtual Building with both plain text and graphic list formats.

 - **Create a Plain Text Format List**: Plain text reports display calculation results in editable tabulated text format. The reports appear in text windows and can be saved as spreadsheet or text files. To view an example of a plain text format, select Basic from List Elements in the Calculate Menu.
Step 30: Building Information - Calculations

• **Create a Graphic Format List:** Graphic outputs allow for both alphanumeric and image information, including element symbol drawings, logos and other bitmaps. Graphic output reports can be saved as RTF List files, ArchiCAD Project files or PlotMaker documents. It is also possible to copy all or part of these lists into an ArchiCAD plan. To view an example of a Graphic format, select **Window Legend 70** from **List Elements** in the **Calculate** Menu.

- **Create Additional Listing Reports:** There are a variety of listing reports available for you in ArchiCAD's **Calculate** Menu. Select and view a few more report options that are of interest to you.

3. **Saving the List:** Once a list is created, it can be saved in various formats. If it is a plain text format, it can be saved as either a plain text, tabbed text or HTML format. To do this, go to the **File** Menu and select the **Save As...** command.

If it is a graphic format, it can be saved as either an RTF (rich text format), ArchiCAD Project or as a PlotMaker format. To do this, go to the **File** Menu and select the **Save As...** command.
A list can also be copied and pasted into your **Floor Plan Window** or an **Elevation/Section Window**. To do this, first fit the report to the window by selecting **Fit in Window** from the **Display** Menu. Then click and drag your Cursor across the report. A marquee will be created. Select **Copy** from the **Edit** Menu and then go to your floor plan or an elevation/section and select **Paste** from the **Edit** Menu.

Note: When a list report is saved out from ArchiCAD or pasted into an **Elevation/Section Window**, the list is no longer connected to the model.
Step 31:

Door & Window Schedules

Overview

When doors and windows are placed into walls, ArchiCAD can create customized schedules. The schedules are linked to the parameters within each door and window for information such as details, UV rating, hardware type, material, etc.

Process to Learn

• Door and Window Parameters
• Editing the Parameters
• Creating a Door Schedule
• Creating a Window Schedule
• Updating the Schedule
• Updating the Drawing

Starting the Step

Open the file named Step-31.pln contained in the Step Files folder.
What to Do

1. **Format the Window Schedule**: To format the Window Schedule, go to the **Calculate** Menu and select **Window Schedule** from the **Door/Window Schedule** command.

 Select **Basic_Window_Set** from the **Schedule Settings** pop-up option. We will use this as a template for our custom Window Schedule. Next, click the button **Edit Settings...** and then click the button **Duplicate**. Enter a new name for the Window Schedule called **Project_Window_Schedule** and click **OK**.

 - **Format using the Window Scheduler**: The **Window Scheduler** dialog will format your Window Schedule, allowing you to specify what information is displayed, its sequence within the schedule and how it is displayed.

 Let us begin by customizing the schedule to contain custom information and formatting. First set which columns of information are to be displayed. Switch off the ID parameter and switch on the Frame Width, the Frame Thickness, the Sash Frame Thickness, the Sash Frame Width and the Sash Frame parameters. To do this, click the General tab and scroll through the Available Parameters, checking or unchecking the desired information to be displayed as columns.

 Next, click the Fields tab and drag the selected Parameter Names up or down to set the sequence in which the columns will appear within the chart. To do
Step 31: Door & Window Schedules

this, click the double arrow at the left of the name and hold the mouse button to drag up or down.

To set the text justification for each column, highlight the Parameter Name (e.g. Frame Width) and select the text justification icon.

Finally, select the Format tab to set the Window Schedule size, header and footer options and pen weight. When finished, click the **OK** button.

- **Format using the List Preview/Edit**: The **List Preview/Edit** dialog allows you to preview how the schedule will look before placing it and to change or update schedule information. When you update schedule information, it will also update placed windows within your model. To open the **List Preview/Edit** dialog, go to the **Calculate** Menu and select **Window Schedule** from the **Door/Window Schedule** command.

Next, add a column header title to identify the columns for the schedule. To do this, first hold down your Shift key and click on the Header Detail, Jamb Detail and Sill Detail options as shown.

With the two column titles highlighted, click the **Edit header** pop-up button and select Insert Header above. Now hold your Control (Win)/Option (Mac) key down and click on the title and type in Details. You can change all the field name by clicking it with the Control key down.

Now do this with the Sash Frame parameters.
To update the windows within your model, highlight the window within the schedule you would like to modify. To change the size of the window, modify the Width or Height. To update the parameters for the selected window, change the Frame Width, Frame Thickness, etc. options as shown. When finished click the **Close** button.

2. **Create a Window Schedule**: To create the Window Schedule you can either place it on the drawing or open a list window. For this exercise we will place it on the floor plan. First create a story that is dedicated to schedules. To do this, go to the **Options** Menu and select **Stories/Story Settings**. In the dialog box highlight Upper Story and click **Insert Above**. Now name the new story **Schedules**. When finished, click **OK**.

Next, open the **List Preview/Edit** dialog for the Window Schedule again. To do this go to the **Calculate** Menu and select **Window Schedule** from the **Door/Window Schedule** command. Now click the **Place on Drawing** button.

ArchiCAD will place the schedule onto your floor plan.
3. **Update the Model**: When changes are made within the **List Preview/Edit** dialog, these changes can automatically update the model. First, change some parameters within the dialog. When finished click the **Apply Changes** button and the model will be updated.

4. **Update the Window Schedule**: Once the schedule is placed on the floor plan it can be automatically updated. To do this, click the **Close** button and then select your **Arrow** Tool. Drag your Cursor to the corner of the schedule and click to highlight the schedule. With the schedule highlighted, open the **List Preview/Edit** dialog for the Window Schedule again.

Now click the **Update on Drawing** button. ArchiCAD will then update the placed schedule.

5. **Repeat for the Door Schedule**: The same steps can be applied to creating, modifying and updating the Door Schedule.
PART SIX: DOCUMENT LAYOUT

32. PLOTMAKER DRAWINGS
33. PLOTMAKER LAYOUTS
34. UPDATING LAYOUTS, PRINTING & PLOTTING
Step 32:
PlotMaker Drawings

Overview
This step will teach you how to save your plan drawings, elevations and sections as PlotMaker drawings. These drawings are placed on a sheet layout in PlotMaker.

These drawings are hotlinked to your ArchiCAD model file.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn
• Saving As a PlotMaker Drawing
 Floor Plan
 Elevation
 Section
 3D View
• PlotMaker File Format
• PlotMaker Naming
• Hotlinks

Starting the Step
Open the file named Step-32.0.pln contained in the Step Files folder.
Information

- **PlotMaker File Type**: PlotMaker is a stand-alone program for arranging and plotting CAD files from ArchiCAD. PlotMaker is strictly a two-dimensional drawing environment with no access to any 3D information contained in the original. The original layering structure is, however, preserved. In order to use PlotMaker you must save the appropriate files as PlotMaker (.PMK) type documents first.

- **Hotlinks**: Once a PlotMaker file is saved from ArchiCAD, it is linked to the ArchiCAD model. This means that as the model updates and changes, ArchiCAD updates your layouts.

What to Do

1. **Set the Plan to the Furniture Plan layer combination**: PlotMaker can control the Layers and Layer Combinations for ArchiCAD plan files such as Floor Plan, Ceiling Plan and Furniture Plan. The Sections and Elevations, however, must be set in ArchiCAD to show the appropriate information before being saved to PlotMaker. To do this, select the Furniture Plan layer combination.

2. **Save the Lower Story as a PlotMaker Drawing File**: PlotMaker Drawing files are linked to the original ArchiCAD model file.
• **Create a PlotMaker Drawing for Lower Story**: Once on the 0. Story verify that all the drawing elements and layers that are to be visible in the plotted document are appropriately shown on screen. Go to **File** Menu and **Save As**. Change file format to PlotMaker Drawing. Save the PlotMaker Drawing with the name 'Plan-0' to the appropriate project folder.

3. **Save the Upper Story as a PlotMaker File**: Repeat the same steps from the previous steps to save the upper story PlotMaker file.

4. **Save the Section/Elevation**: Go to the **Windows** Menu and open a **Section/Elevation Window**.

Set the Plan to the **3D Model** layer combination.
Next repeat the same steps above to save each section and elevation as a PlotMaker file.

5. **Review the Hotlinks Created from the PlotMaker Files**: Go to the **File** Menu and select **Save Special** and **Hot-linked Drawings**.

Notice that the files we saved out for our plans, sections and elevations are now registered in our model as hotlinks. In the future, as the model changes, we can click **Save** or **Save All** to update all these hotlinks.

Note: If you are using a demo version of ArchiCAD, you can open the file named Step-32.1.pln in the Step Files folder to see the above Window.
6. **3D Views**: First we will create a perspective view with 3D Cutaway to show the structure and the interior of the building. Select the **3D Cutting Planes** from the **Image** Menu and set the cutting plane as shown below.

![3D Cutting Planes](image)

After this we have to switch on the **3D Cutaway** in the **Image** Menu. When ArchiCAD has finished the calculation, a picture like this will appear:

![3D Cutaway View](image)

Select **Save as** from the **File** Menu and when the dialog box appears, choose the .tif file format and set the name to Section View. Save the file to the Step Image folder under the Step Files folder.

Switch **off** the **3D Cutaway** in the **Image** Menu.
Now we will make some elevations from the 3D Model. Select the **Marquee** Tool from the **Toolbox**. Set the marquee type to **Bold Marquee**. The Bold Marquee selects the elements on all stories.

Open the **3D Projection Settings** dialog box and click **Parallel Projections**. Select **Dimetric Axonometry** and click on the **OK** button.

Change the **3D View Mode** to **Hidden Line**. You will see the 3D View of the building as shown below.

Select the **Look to** mode from the 3D Navigation Palette as illustrated, and click on the wall surface. You will see how the view point changes.

Make all elevations from the model and select **Save as** from the **File** Menu. Save the elevations as East Elevation, North Elevation, West Elevation and South Elevation to the Step Files folder as a PlotMaker file.
Step 33:

PlotMaker Layouts

Overview

This lesson will demonstrate how to create a new sheet layout for your PlotMaker drawings, how to create a title block, how to add PlotMaker drawings and how to scale or resize the drawings.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn

- PlotMaker Layout Window
- PlotMaker Drawing Window
- Setting up a New Layout
- Add Drawing
- Set Drawing Scale
- Drawing Frame
- Drawing Layers

Starting the Step

PlotMaker is a separate application from ArchiCAD. Go to the ArchiCAD 70 folder and double-click the PlotMaker application icon to launch the program or select it from the Start button. Once PlotMaker opens, click OK on the first screen. Hold down the Alt key (Windows) or Option key (Macintosh), then go to the File Menu and choose New and reset to create a file with the default settings.
Information

1. **The Layout Window**: Drawings are loaded into PlotMaker as single elements that are placed in the **Layout Window**. The Layout is a visual representation of the drawing sheets to be used for your final output. The Layout is like a pasteboard on which you configure your final output plot. Once placed, drawings appear on the Layout as monochrome bitmapped images with nine hotspots located around the edges and in the center.

2. **The Drawing Window**: The **Drawing Window** provides an environment where PlotMaker drawings become individually editable construction elements. The individual lines, text and other construction elements of a drawing can be edited in the **Drawing Window**.
What to Do

1. Setup the Layout: When PlotMaker opens, the Layout Size dialog will appear. This dialog will set up the sheet size for the new layout. In this exercise, set the Layout Size to Architectural D. The Page Setup button will configure a printer and the Plot Setup button will configure your plotter. When finished, click the OK button. Before you begin, save the file as Site Plan-0 into your project layout folder.

2. Create a Titleblock: Before placing the PlotMaker Drawings, you need to add a titleblock. The drawing tools in PlotMaker are similar to ArchiCAD. Select the Line Tool from the Toolbox and the rectangle geometry option from the Coordinate Box. Now draw a boundary for the titleblock.

3. Add to the Layout: Now we are ready to add the PlotMaker Drawings. Go to the File Menu and choose Add Drawing. Select the upper story PlotMaker File (Plan-1.pmk) created in Step-32. Place the drawing on your layout.
Select Layer Combination: With the placed drawing selected, open the Layer Settings dialog box (Options/Layers/Layer Settings). Select the Site Plan layer combination to view the site plan.

4. Add More PlotMaker Drawings: Repeat step 3 for the remaining plan, elevation and section layouts.

Note: You can switch on or off the layers according to your needs. You can check the layouts in the files named Site Plan.lay, Floor Plans.lay and Sections and Elevations.lay.
5. **Set Drawing Settings for the Enlarged Plan:** PlotMaker allows you to independently set the scale for each drawing. To enlarge a portion of the plan drawing, select the placed drawing and choose the **Drawing Settings** command from **Edit** Menu. Choose a scale from the predefined selection, or create a nonstandard scale. You can also modify the scale of the selected drawing graphically by stretching it diagonally while pressing the Shift key (stretching it horizontally or vertically will crop it).
6. **Change Drawing View**: By changing the **Drawing Window**, you can customize the drawing view. To show a portion of the plan drawing, select the drawing frame and move the Cursor over one of the selected drawing’s hotspots. Click and hold on the hotspot. Now move the mouse. This technique allows the size of the drawing frame to be increased or decreased independently on all four sides. Click when the desired crop is achieved. This action does not affect the scale of the drawing.

The drawing can also be moved within the frame. Select the drawing and then click and hold anywhere within the frame. Now move the mouse until the correct portion of the drawing is shown in the frame. Click when done.
Step 34:

Updating Layouts, Printing & Plotting

Overview
Whenever you save a file in PlotMaker format from ArchiCAD and place that file into a PlotMaker Layout, a Hotlink connection is created. This allows you to automatically update your PlotMaker Drawing files from ArchiCAD.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving, printing and plotting files are not available in the demo version.

Process to Learn
• Purpose of Linked Drawings
• Updating Linked Drawings
 Save Special Command
• Printing & Plotting from ArchiCAD
• Printing & Plotting from PlotMaker

Starting the Step
Open the file named Step-34.pln contained in the Step Files folder.
Information

Whenever you save a file from ArchiCAD in PlotMaker format and place that file into a PlotMaker Layout through the Add Drawing... command, a direct connection is created between the saved file and the layout. Hotlinks help you to further improve this connection and give you the possibility of updating several files simultaneously.

What to Do

1. **Hotlinked Drawings**: When choosing Save Special/Hotlinked Drawings, ArchiCAD prepares and displays a list of files saved in PlotMaker format from the current project's Floor Plan or Section/Elevation Windows, containing the name and destination of the files, as well as the name (if any) of the layer combination that was active when saving.

 • **Create a Change**: To understand how hotlinks work, first make a change or changes to your project in the ArchiCAD model file you created or from the Step Files: Step-34.pln.

 • **Updating a Linked PlotMaker Drawing File**: Now that changes have been made to your ArchiCAD project, go to the File/Save Special and select Hotlinked Drawings.

Now click Save All to update the Hotlinks.

• **Go to PlotMaker**: When you open the layout file in PlotMaker, you will see the drawings updated. If the PlotMaker layout file is currently open and you do not see the drawing updated, simple go to the Display Menu and select Rebuild.
2. **Printing & Plotting**: Both ArchiCAD and PlotMaker have the capabilities to print and plot your drawings. Printing/plotting from ArchiCAD is generally used to produce quick check prints while printing/plotting from PlotMaker is intended to produce final layouts complete with titleblock, various scaled drawings and project information.

- **Creating a Print or Plot from ArchiCAD**: To create a print or plot from ArchiCAD, first set up the printer or plotter as described in the *ArchiCAD Reference Guide*. Once connected to the printer or plotter, go to the **File** Menu and select **Print...** or **Plot**...

- **Creating a Print or Plot from PlotMaker**: Creating a print or plot from PlotMaker is very similar to the steps above. The only difference is that there is no scale option in the **Print** and **Plot** dialogs. This is because in PlotMaker you are printing a set sheet size and the drawing sizes are determined by the scale you assign to them when you add a PlotMaker drawing to a PlotMaker layout.

In both the **Print** and **Plot** dialogs, you will be able to change the scale of the final output, set the color of the output and other options. Simply click the **Print** or **Plot** button in the dialog and ArchiCAD will begin processing it.
PART SEVEN: PROJECT MANAGEMENT AND COORDINATION

35. MANAGING PROJECT DRAWINGS
36. REVIEWING A PROJECT
37. MANAGING A PROJECT TEAM
38. ARCHIVING A PROJECT
Step 35:

Managing Project Drawings

Overview

ArchiCAD has several Hotlink options. Additionally, hotlinked modules can be inserted into an ArchiCAD file, allowing a single source file to automatically update all instances in linked ArchiCAD model files.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn

• Purpose of Linked Drawings
• Linking External Drawings
 - Hotlinked Modules
 - Hotlinked Drawings
• Updating Hotlinks

Starting the Step

Open a new ArchiCAD file with the default settings. To do this, hold down the Alt key (Windows) or Option key (Macintosh), then go to the **File** Menu and choose **New and reset**. Save the _Untitled_ document as _Master Plan_ or open the file named _Step-35.0.pln_ in the **Step Files** folder.
Information

1. **Hotlinked Modules**: A Hotlink is a logical pointer to a single story of an external source file and an attribute of element sets called Modules.

 - The source file can be a **Solo Project**, a **Team Project** or a **Module file**.
 - The host file can include any number of Hotlinks.

 Using **Hotlinked Modules** allows you to more easily manage repetitive structures by having to edit a single source file that has several instances placed in the project. Elements of the host file follow all changes made in the source.

2. **Hotlinked Drawings**: **Hotlinked Drawings** are drawing files linked to PlotMaker. If you place a PlotMaker Drawing on a Layout, a link is created between the ArchiCAD model file and the placed PlotMaker Drawing. If you overwrite the original drawing file with a newer one, it will be updated on the Layout the next time you open or rebuild it.

What to Do

1. **Hotlinked Modules**: The **Master Plan** document you just saved will be used as the base model with links to the **House Project** file, a site plan model and a module file. In this step we will link an ArchiCAD site plan from the CD-ROM. If you don't have the CD-ROM, draw a site plan similar to the one in this exercise and save it as a Solo Project file called “Site Plan”.

 • **Modify Layers**: Open the **Layers** dialog under the **Options** Menu. Click the **Select All** button and **Clear**. Next, select each Layer Combination individually and click the **Clear** button. Finally, add three new layers called **Master Plan-House**, **Master Plan-Landscape** and **Master Plan-Site**. Click **OK** when finished.

 ![Layers dialog](image)

 • **Link the Site Plan**: Select the **Place Module** option from **Hotlinked Modules** in the **File** Menu and click **Choose Hotlink** in the appearing dialog.
Click the pop-up button and choose Solo Projects. Now locate and select the *Site Plan.pln* file. On the CD-ROM this would be in the same folder where the Step by Step project files are located. Click **Open** when finished.

ArchiCAD will prompt you to choose the 1. Story. The *Site Plan.PLN* hotlink is now an active hotlink. Click **OK** to choose this link.

The final dialog allows you to set the Master Layer, Orientation and Elevation of the hotlink. Select the layer you created called *Master Plan-Site* and click **Place Module** to place the linked site plan.

When the site plan appears on the screen, click outside the marquee area to place the link. Set the Scale 1"=30". Switch off the **Grid Display**.
• **Link a project**: Using the same steps for placing the site plan, place the *Step-32.0.pln* file. ArchiCAD will prompt you to choose between two stories. In this case choose the upper story since we want to use the roof plan for the Master plan. When you are prompted to set the Master Layer, Orientation and Elevation of the hotlink, select the layer you created called *Master Plan-House* and click **Place Module** to place the linked project on the site.

After the project is placed set the layers to properly show the roof plan. To do this, open the **Layer Settings** dialog and show only the following layers:

- Master Plan-House
- Master Plan-Site
- Master Plan-Landscaping
- Roof

Now select the house and create copies of it using the **Drag a Copy** command from the **Edit** Menu.
Step 35: Managing Project Drawings

• **Link the Module**: A Module is a set of construction elements placed on the floor plan using a Hotlink. First, place a few Bicycle Holder 03 70 library parts from the Park and Street 70 section of the library.

![Image showing Bicycle Holder 03 70 library parts]

Next, select all the Bicycle Holder 03 70 library parts (hold down the Shift key while clicking each part) and select **Save Selection as Module** from the Hotlinked Modules command in the File Menu. Name the file Bicycle Design.MOD and select Module as the file format. Save it in the Step Files folder.

![Image showing Save Selection as Module]

The new module is ready to be inserted. Using the same steps for placing the site plan, place the Bicycle Design.MOD file. When you are prompted to set the Master Layer, Orientation and Elevation of the hotlink, select the layer you created called Master Plan-Landscaping and click **Insert Module** to place the linked Bicycle Design.MOD on the site.

• **Updating the Links**: To update the Site Plan, your project or Bicycle Design links, simply open the original file, make changes and **Save**. Then open the Master Plan or the file Step-35.1.pln from the Step Files folder and choose the Hotlinks command from Hotlinked Modules in the File Menu. Click the Update button and click OK.

![Image showing Update button]

ArchiCAD Step by Step Tutorial
Step 36: Reviewing a Project

Overview

This exercise will demonstrate how to use the Project Mark-Up command to enter commentary both visually and in words on an existing ArchiCAD Virtual Building design. Project Mark-Up is intended to facilitate communication between project members and designers during a project. Additionally, you will learn how to publish project drawings for review over your network or the Internet using ArchiCAD’s Project Publisher.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn

- Project Mark-Up Palette
- Mark-Up Info
- Mark-Up Styles
- Publishing a Project
- Using Project Reviewer

Starting the Step

Open the file named Step-36.pln in the Step Files folder.
What to Do

1. **The Mark-up Palette**: You may wish to mark up a design for many reasons - for example to correct and manage a colleague’s errors or deviations from a project’s guidelines, or to make alternative design suggestions. More than one person can mark up a drawing. Project Mark-Up supports several different commentaries by allowing the use of different colors and line types for each separate redline.

 • **Create a Mark-Up**: To show the **Project Mark-Up** palette, go to the **File** Menu and select **Show Mark-Up Palette** from the **Project Mark-Up** Menu command. The palette will appear in its compressed form.

 Click on the **Info Window** button on the right and the **Mark-Up Remark** box will appear. This box is used to add comments for your mark-up.

 To add a mark-up to your plan, click the **Start Project Mark-Up** button. This is the button that turns the Mark-Up process on. Now drag your Cursor to the area you wish to mark-up and circle the area.

 Next, add a comment to the mark up by typing in the **Project Mark-Up Remark** box. When finished, click the **Place** button and drag your Cursor to the edge of the mark-up and click to place the remark. Change the font size to 8 pt. in the **Text Settings** dialog box.
Step 36: Reviewing a Project

Edit a Mark-Up: If you click on the Extend/Compress button on the Project Mark-Up palette, the Project Mark-Up Remark box is integrated into the extended palette and some additional fields become available.

Add your name as the person who created the mark-up in the Created By text field. You can also edit the original remark, change the name of the mark-up and assign the style of mark-up using the pop-up list.

A discussion can also be created by clicking on the Discuss tab. This tab allows you to enter the names of people who redlined, the dates and time it
was done. This tab page also contains a box for adding comments about the mark-up entry. A comment can be attached to each name. To add a new comment, click the **New** button, type your name and type the comment to be added.

- **Create a Mark-Up Style**: You define and link a style to a Mark-Up Entry by scrolling the **Styles** list and checking the style to be assigned to the selected entry. The entry can be given a different style later. When starting mark-up, these settings (attributes) will be applied to all elements.

You can edit the styles to be attached to any mark-up entry, so that different mark-up entries can look different from each other, in linetype, color, and so on. Click on **Edit** on the top right of the **Project Mark-Up** palette. The **Edit Mark-Up Styles** dialog box appears.
2. Project Publisher: ArchiCAD’s Project Publisher command allows you to publish 2D, 3D and listing aspects of your Virtual Building, in one of three ways:

- Save a set of files on your computer’s hard disk or to any volume on the local area network;
- Upload the files to an FTP server through the Internet;
- Print the files to the printer of your choice.

Note: Published files can be viewed through the Internet with Project Reviewer. When you publish your Virtual Building by saving it or uploading it to the Internet, you can specify that the Project Reviewer web environment (a Java applet) should be included in the published files.

You can save files in the following formats:

- Vectorial drawings: DWF (recommended for the Internet), MOD, DWG, DXF
- PlotMaker files: PMK
- Image files: JPG, GIF, TIF, BMP
- Text: RTF, TXT, HTML
- Movie: MOV (QuickTime), AVI

Set Up the Documents to be Published: To set up the Project Publisher, go to the File Menu and select Publish from the Project Publisher command.

This will open the Publisher dialog. On the left in the Publisher dialog box, under Publishable items, is a predefined structured list of what is available for publishing. Click the Stories folder to view the lower and upper Stories. Now open the Lower Stories folder by double-clicking it or clicking the plus sign next to it, and **The entire Lower Story** file will appear. Select it and the whole lower story’s preview will appear.
To publish the Lower Story, click **The entire Lower Story** file and drag it to the Publication Set area.

Now define where the document should be published. To do this, click the **Sets** button. A publication set is simply the collection of views from your project that you want to publish. To create a new set, click **New** and type in a new name (such as **Consultants**).

Now describe the path name of the published documents. This could be the path name for an FTP server for use through the Internet or a volume on your hard drive or network. In this case, choose your Desktop.

Finally, click the button **Include Project Reviewer web environment**. **Project Reviewer** allows another person, who does not need to know ArchiCAD, to view your building design and, if the published format is DWF, to redline it and send it back to you.
• **Publish your Project Documents:** To publish the documents you have selected, click the **Publish** button at the bottom of the **Publisher** dialog. This will publish the documents in a format that can be viewed using an Internet browser.

• **Review your Published Project:** To review your published drawings, go to your hard drive and double click the file you published. This will open the file into a web browser, either Internet Explorer of Netscape, using **Project Reviewer**. The **Project Reviewer Java applet** included with the file set is launched and the following view is displayed in the browser window:

![Project Reviewer Java applet](image)

In the left-hand margin, you can see the folder structure of the published files. Select a view in the list. The top section of the **Reviewer Window** will show some basic information about the set and the current view, as well as show a preview of the file.

![Reviewer Window](image)

In the bottom section of the **Reviewer Window**, you can display and mark up the selected view (the **View** tab must be active). The toolbar contains a number of standard commands (**Open**, **Print**, **FTP**, **Zoom**, **Pan**), as well as the...
panel allowing you to display the **Layers** saved with the file and a switch enabling a second toolbar for redlining.

The **Project Reviewer**'s redlining palette allows you to add to the DWF file simple elements (lines, polylines, pointers, ellipses, cloud shapes, text and labels), to select, delete and group placed redlining elements and to define a number of redlining options. Redlining options include color, font type and size and an optional info text.

Clicking the E-mail tab page opens a standard e-mail message dialog box. You can send the annotated DWF file back to its originator who can incorporate it into his design by importing it.
Step 37: Managing a Project Team

Overview
Step 37 demonstrates how team members can access a shared model file. **Teamwork** commands allow a team member to sign-out specific layers from the model while retaining a reference to other parts of the project. When changes are made, the model is updated by sending changes to the master model.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because the demo version does not contain Teamwork functionality.

Process to Learn
- Rules of Team Members
- Sharing a Project
 - Signing In to a Project
 - Sending and Receiving Changes
 - Project Sharing Info
- Signing Out of a Project
- Types of TeamWork Files
- Changing Workspace

Starting the Step
Open the file named *Step-37.pln* contained in the *Step Files* folder.
Information

There are four possible roles in ArchiCAD for TeamWork:

- **Administrator**: The person who coordinates the team and first shares the project. There can only be one Administrator. When signed in as the Administrator, it is not possible to work on the project or reserve areas.

- **Team Leader**: The person responsible for the project. They can modify and create layers, stories, pens, units, etc. Only one person can be signed in as Team Leader at any one time.

- **Teammate**: Any team member working on any part of the shared project.

- **Viewer**: Anyone able to access the shared project through the network, but their modifications do not appear in the Team Project.

What to Do

1. **Sharing the Project**: When you have finished making the necessary preparations, you can share the project with the other members of the team.

 - **Create Administrator and Team Leader**: With the ArchiCAD tutorial file open, choose Share This Project from the Teamwork Menu. Click on Set Key Passwords. Enter the Administrator Name and then click on Set Administrator Password and enter a password. You will be required to verify the password. Now click Set Team Leader Password and repeat the same steps. Now click OK in the Set Key Passwords dialog.
• **Share the Project:** In the *Project Sharing Setup* click **Share**. Enter the required password. You are prompted to save the .PLP file. Save the file in the appropriate location. This is the Team Project file. The project can now be signed into.

2. **Signing into a Project:** Once the project has been shared, teammates can start signing in to it. Access to the project can either be free (depending on the current network access privileges) or restricted by the Administrator. In the latter case, only users identified by name and an optional password are allowed to participate in the work.

• **Sign In:** Go to the ArchiCAD Menu and select **Teamwork/Sign In**. Select the .PLP project file in the dialog.

The **Sign In** dialog box appears. Select **Teammate**, and enter a name and password. Click **Set Password**. The first time you sign in, a prompt box asking you whether you want to register as a Team Member will appear. Click on **Yes**.
3. **Reserving a Workspace**: After signing in to a Teamwork project, the **Sign In Wizard** offers a set of options for reserving a part of the shared project.

- **Reserve Floor Plans**: Click on the **Next** button to go to the first option dialog box. Select the Stories and Layers you wish to reserve. If you wish to reserve just part of the project floor plan, click the **Marquee** Tool and select an area of the Floor Plan. You will have exclusive rights to the layers and marquee area that you reserve.

- **Reserve Sections/Elevations and Animation/VRs**: Click on the **Next** button to go to the **Sections/Elevations** and **Animation/VRs** dialog box. Select the appropriate parts to access.

- **Review the Selected Workspace**: Click on the **Next** button to go to the last option dialog box. This box displays a summary of the selected options that you can review before signing in. Make any changes required by clicking on the **Previous** button. When you are certain of the Workspace options, click **Sign In**.
4. **Working within a Reserved Workspace**: Elements inside the reserved area can be freely modified or deleted by the teammate who has made the reservations.

Elements that are locked, reserved by others or not reserved at all cannot be modified, but can be viewed in all windows (Floor Plan, 3D Window, Sections/Elevations, lists). These elements can be selected, their settings dialog boxes can be viewed, their parameters can be copied from there or picked up by Option/Alt-clicking the element.

5. **Sharing Info**: During the course of being signed into a project, the status of Team Members’ access details and status can be easily checked.

- **Check Project Sharing Info**: Go to the Teamwork Menu and select **Project Sharing Info**. A window appears that shows a list of Team Members and their sign-in status. Select a Team Member to view their sign-in details.

6. **Sending and Receiving Changes**: Changes made by any team member are sent to the shared Team Project by choosing the **Send and Receive Changes** command from the Teamwork Menu, or (optionally) when signing out. Changes sent to the Team Project do not appear automatically in other teammates’ copies. In order to see changes made by another teammate, choose **Receive Changes**.
7. **Working on a Local Copy**: Some team members may need to work at home or in a remote location. In this case, the solution is to make a local draft copy of the Shared Project, preserving the sign-in reservations made.

- **Creating a Local Copy**: To create a local draft copy of the Shared Project, choose the **Save as...** command from the **File** Menu. The created file can be opened similarly to a Solo Project by choosing **File/Open** and the **Draft** option or by double-clicking the file. This file contains all the relevant data about the Team Project, including the reservations made by the Teammate.

8. **Change My Workspace**: If a teammate needs access to a layer or area you have reserved, you can change your workspace by selecting **Change My Workspace** from the **Teamwork** Menu. When the dialog appears, you may select new layers or release currently selected layers for other team members.

9. **Signing Out of a Project**: Choosing this command breaks contact with the Team Project and releases your reserved workspace for other teammates who may wish to sign into it. If you have made any changes, you are prompted to send them in. If you choose **No** in this dialog box, your changes will be lost.
Step 38:
Archiving a Project

Overview
At the end of a project it is important to archive your project model and its associated library. To do this, ArchiCAD offers an archive feature that embeds the library parts into a single model file.

Note: If you only have a demo version of ArchiCAD, you will not be able to do this exercise as described here, because saving files is not available in the demo version.

Process to Learn
• Archive
 Saving an Archive
 Open an Archive
• Archive Library

Starting the Step
Open the file named Step-38.0.pln contained in the Step Files folder.
Step 38: Archiving a Project

Information

ArchiCAD Projects may refer to a number of items called Library Parts, stored as outside files in Library folders or directories. You need to designate one or more active libraries when starting a project. If you then open the project in another environment (for example on a different computer), these outside files may be missing.

If you want to ensure that all files referenced in the project are included, you should use the Save Special/Archive... command. Documents saved as Archives are stored together with all the Library Parts and properties contained by and defined with the project.

This format is commonly used for saving backups, archives and portable documents of your work.

What to Do

1. Saving as an Archive File: If you are ready to save an Archive of your project, go to the File Menu to Save Special and select Archive.

 ![Screenshot of the Archive dialog box]

 In the Archive dialog box, locate the folder location you wish to save to, choose the appropriate options and Save.
2. Opening an Archive File: When you open an Archive type document using the Project format in the Open dialog box, a new library is automatically created, which you can rename. This library contains all the items and properties used with the project, but none other. Since it automatically becomes your active Library, you will have to search for new items from outside libraries (when needed).

Open the Archive file you created and ArchiCAD will ask you where to create the archive library. Select the location for the embedded project library and click OK.

![Library selection screen]

Library: c:\archicad 7.0\step files\step38.lib
Step 38 LIB
Select Existing Library OK Cancel
Contents

Introduction ... 1

Part One: Concepts and Tools .. 11
Introductory Step .. 12
Introduction to ArchiCAD .. 12
Step 1: Virtual Building Basics .. 20
Step 2: Tools and Palettes .. 25
Step 3: Cursor Forms .. 30
Step 4: Editing and Notation .. 37
Step 5: The 3D Environment .. 48
Step 6: Understanding Libraries ... 55

Part Two: Project & Office Setup ... 59
Step 7: Option Settings ... 60
Step 8: Drawing Preferences .. 65
Step 9: Layer Organization ... 71
Step 10: QuickViews and Favorites 76

Part Three: Creating a Virtual Building 81
Step 11: Building Slab ... 82
Step 12: Walls and Columns ... 88
Step 13: Doors and Windows .. 94
Step 14: Stairs and Handrails ... 103
Step 15: Roof Plan .. 110
Step 16: Building Structure ... 119
Step 17: Furniture and Equipment 127
Step 18: Ceilings and Lights .. 133
Step 19: Moldings and Panels ... 140
Step 20: Site Layout .. 144
Step 21: Zones and Sections/Elevations 152
Step 22: Creating Library Parts .. 167